572 Higher Engineering Mathematics
Problem 2. The relationship between expenditure
on welfare services and absenteeism for similar
periods of time is shown below for a small company.Expenditure
(£′000) 3.5 5.0 7.0 10 12 15 18
Days lost 241 318 174 110 147 122 86Determine the coefficient of linear correlation for
this data.LetXbe the expenditure in thousands of pounds andY
be the days lost.The coefficient of correlation,r=∑
xy
√{(∑
x^2)(∑
y^2)}wherex=(X−X)andy=(Y−Y),XandYbeing the
mean values ofXandYrespectively. Using a tabular
approach:X Y x=(X−X) y=(Y−Y)3.5 241 −6.57 69.9
5.0 318 −5.07 146.97.0 174 −3.07 2.910 110 −0.07 −61.1
12 147 1.93 −24.115 122 4.93 −49.118 86 7.93 −85.1
∑
X= 70. 5 , X=70. 5
7= 10. 07∑
Y= 1198 , Y=
1198
7= 171. 1xy x^2 y^2−459.2 43.2 4886−744.8 25.7 21580−8.9 9.4 8
4.3 0 3733xy x^2 y^2−46.5 3.7 581−242.1 24.3 2411
−674.8 62.9 7242
∑
xy=− 2172∑
x^2 = 169. 2∑
y^2 = 40441Thus
r=− 2172
√
[169. 2 ×40441]=− 0. 830This shows that there isfairlygood inverse correlation
between the expenditure on welfare and days lost due
to absenteeism.Problem 3. The relationship between monthly
car sales and income from the sale of petrol for a
garage is as shown:Cars sold 25 31214 7 32814 7313Income from
petrol sales 1291321172231471710911
(£′000)Determine the linear coefficient of correlation
between these quantities.Let Xrepresent the number of cars sold andYthe
income,inthousandsofpounds,frompetrol sales.Using
the tabular approach:X Y x=(X−X) y=(Y−Y)
2 12 −7.25 −6.255 9 −4.25 −9.253 13 −6.25 −5.25
12 21 2.75 2.7514 17 4.75 −1.257 22 −2.25 3.753 31 −6.25 12.7528 47 18.75 28.75
14 17 4.75 −1.257 10 −2.25 −8.253 9 −6.25 −9.25