Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Inverse Laplace transforms 597


Problem 9. Determine

L−^1

{
5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )

}

5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )


A
s+ 3

+

Bs+C
(s^2 + 1 )


A(s^2 + 1 )+(Bs+C)(s+ 3 )
(s+ 3 )(s^2 + 1 )

Hence 5s^2 + 8 s− 1 ≡A(s^2 + 1 )+(Bs+C)(s+ 3 ).


Whens=− 3 , 20 = 10 A, from which,A=2.


Equatings^2 terms gives: 5=A+B, from which,B=3,
sinceA=2.


Equating s terms gives: 8= 3 B+C, from which,
C=−1, sinceB=3.


HenceL−^1


{
5 s^2 + 8 s− 1
(s+ 3 )(s^2 + 1 )

}

≡L−^1

{
2
s+ 3

+

3 s− 1
s^2 + 1

}

≡L−^1

{
2
s+ 3

}
+L−^1

{
3 s
s^2 + 1

}

−L−^1

{
1
s^2 + 1

}

=2e−^3 t+3cost−sint,
from (iii), (v) and (iv) of Table 63.1

Problem 10. FindL−^1

{
7 s+ 13
s(s^2 + 4 s+ 13 )

}

7 s+ 13
s(s^2 + 4 s+ 13 )


A
s

+

Bs+C
s^2 + 4 s+ 13


A(s^2 + 4 s+ 13 )+(Bs+C)(s)
s(s^2 + 4 s+ 13 )

Hence 7s+ 13 ≡A(s^2 + 4 s+ 13 )+(Bs+C)(s).


Whens= 0 , 13 = 13 A, from which,A=1.


Equating s^2 terms gives: 0=A+B, from which,
B=−1.

Equatingsterms gives: 7= 4 A+C, from which,C=3.


HenceL−^1

{
7 s+ 13
s(s^2 + 4 s+ 13 )

}

≡L−^1

{
1
s

+

−s+ 3
s^2 + 4 s+ 13

}

≡L−^1

{
1
s

}
+L−^1

{
−s+ 3
(s+ 2 )^2 + 32

}

≡L−^1

{
1
s

}
+L−^1

{
−(s+ 2 )+ 5
(s+ 2 )^2 + 32

}

≡L−^1

{
1
s

}
−L−^1

{
s+ 2
(s+ 2 )^2 + 32

}

+L−^1

{
5
(s+ 2 )^2 + 32

}

≡ 1 −e−^2 tcos3t+

5
3

e−^2 tsin3t

from (i), (xiii) and (xii) of Table 63.1

Now try the following exercise

Exercise 224 Further problemson inverse
Laplace transformsusing partial fractions

Use partial fractions to find the inverse Laplace
transforms of the following functions:

1.

11 − 3 s
s^2 + 2 s− 3

[2et−5e−^3 t]

2.
2 s^2 − 9 s− 35
(s+ 1 )(s− 2 )(s+ 3 )

[4e−t−3e^2 t+e−^3 t]

3.

5 s^2 − 2 s− 19
(s+ 3 )(s− 1 )^2

[2e−^3 t+3et−4ett]

4.

3 s^2 + 16 s+ 15
(s+ 3 )^3

[e−^3 t( 3 − 2 t− 3 t^2 )]

5.

7 s^2 + 5 s+ 13
(s^2 + 2 )(s+ 1 )
[
2cos


2 t+

3

2

sin


2 t+5e−t

]

6.

3 + 6 s+ 4 s^2 − 2 s^3
s^2 (s^2 + 3 )
[2+t+


3sin


3 t−4cos


3 t]
Free download pdf