Inverse Laplace transforms 599
Problem 12. Determine the poles and zeros forthe function:F(s)=(s+ 3 )(s− 2 )
(s+ 4 )(s^2 + 2 s+ 2 )
and plot them on a pole-zero map.For the numerator to be zero,(s+ 3 )=0and(s− 2 )=0,
hencezeros occur ats=− 3 and ats=+ 2 Poles occur
when the denominator is zero, i.e. when(s+ 4 )=0, i.e.
s=− 4 ,andwhens^2 + 2 s+ 2 =0,
i.e.s=− 2 ±√
22 − 4 ( 1 )( 2 )
2=− 2 ±√
− 4
2=− 2 ±j 2
2=(− 1 +j)or(− 1 −j)The poles and zeros are shown on the pole-zero map of
F(s)in Figure 63.2.
2 jjj24 23 22 21 0 123Figure 63.2
It is seen from these problems that poles and zeros
are always real or complex conjugate.
Now try the following exerciseExercise 225 Further problemson poles
and zeros- Determine for the transfer function:
R(s)=50 (s+ 4 )
s(s+ 2 )(s^2 − 8 s+ 25 )
(a) the zero and (b) the poles. Show the poles
and zeros on a pole-zero diagram.
[
(a)s=−4(b)s= 0 ,s=− 2 ,
s= 4 +j 3 ,s= 4 −j 3]- Determinethepolesandzerosforthefunction:
F(s)=
(s− 1 )(s+ 2 )
(s+ 3 )(s^2 − 2 s+ 5 )and plot them on
a pole-zero map.
[
poles ats=− 3 ,s= 1 +j 2 ,s= 1 −j 2 ,
zeros ats=+ 1 ,s=− 2]- For the functionG(s)=
s− 1
(s+ 2 )(s^2 + 2 s+ 5 )
determine the poles and zeros and show them
on a pole-zero diagram.
⎡
⎣poles ats=− 2 ,s=− 1 +j 2 ,
s=− 1 −j 2 ,
zero ats= 1⎤
⎦- Find the poles and zeros for the transfer func-
tion:H(s)=s^2 − 5 s− 6
s(s^2 + 4 )and plottheresults in
the s-plane.
[
poles ats= 0 ,s=+j 2 ,s=−j 2 ,
zeros ats=− 1 ,s= 6]