44 Higher Engineering Mathematics
x 0 1 2 3shx 0 1.18 3.63 10.02chx 1 1.54 3.76 10.07y=thx=shx
chx0 0.77 0.97 0.995y=cothx=chx
shx±∞ 1.31 1.04 1.005(a) A graph ofy=tanhxisshowninFig.5.3(a)
(b) A graph ofy=cothxisshowninFig.5.3(b)Both graphs are symmetrical about the originthus tanhx
and cothxare odd functions.Problem 8. Sketch graphs of (a)y=cosechx
and (b)y=sechxfromx=−4tox=4, and, from
the graphs, determine whether they are odd or
even functions.yx(a)y 5 tanh x2322211210123yx(b)y 5 coth xy 5 coth x2322211230123212322Figure 5.3A table of values is drawn up as shown belowx − 4 − 3 − 2 − 1shx −22.29 −10.02 −3.63 −1.18cosechx=1
shx−0.04 −0.10 −0.28 −0.85chx 27.31 10.07 3.76 1.54sechx=1
chx0.04 0.10 0.27 0.65x 0 1 2 3 4shx 0 1.18 3.63 10.02 27.29cosechx=1
shx±∞ 0.85 0.28 0.10 0.04chx 1 1.54 3.76 10.07 27.31sechx=1
chx1 0.65 0.27 0.10 0.04(a) A graph ofy=cosechxis shown in Fig. 5.4(a).
The graph is symmetrical about the origin and is
thus anodd function.
(b) A graph ofy=sechxisshowninFig.5.4(b).The
graph is symmetrical about they-axis and is thus
aneven function.y 5 cosech xyx(a)y 5 cosech x232221 0123123212322yx(b)y 5 sech x2322210 1231Figure 5.4