Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

626 Higher Engineering Mathematics


Hence the Fourier series is:

f(θ)=θ^2 =

π^2
3

− 4

(
cosθ−

1
22

cos2θ+

1
32

cos3θ


1
42

cos 4 θ+

1
52

cos5θ−···

)

Problem 5. For the Fourier series of Problem 4,
letθ=πand show that

∑∞
n= 1

1
n^2

=

π^2
6

Whenθ=π,f(θ )=π^2 (see Fig. 68.3). Hence from the
Fourier series:

π^2 =

π^2
3

− 4

(
cosπ−

1
22

cos2π+

1
32

cos3π


1
42

cos4π+

1
52

cos5π−···

)

i.e.

π^2 −

π^2
3

=− 4

(
− 1 −

1
22


1
32


1
42


1
52

−···

)

2 π^2
3

= 4

(
1 +

1
22

+

1
32

+

1
42

+

1
52

+···

)

i.e.
2 π^2
( 3 )( 4 )

= 1 +
1
22

+
1
32

+
1
42

+
1
52

+···

i.e.

π^2
6

=

1
12

+

1
22

+

1
32

+

1
42

+

1
52

+···

Hence

∑∞

n= 1

1
n^2

=

π^2
6

Now try the following exercise

Exercise 230 Further problems on Fourier
cosine and Fourier sine series


  1. Determine the Fourier series for the function
    defined by:


f(x)=


⎪⎪
⎪⎪

⎪⎪
⎪⎪

− 1 , −π<x<−

π
2
1 , −

π
2

<x<

π
2
− 1 ,

π
2

<x<π

which is periodic outside of this range of
period 2π.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=

4
π

(
cosx−

1
3

cos3x

+

1
5

cos5x


1
7

cos7x+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Obtain the Fourier series of the function
    defined by:


f(t)=

{
t+π, −π<t< 0

t−π, 0 <t<π

which is periodic of period 2π. Sketch the
given function.





f(t)=− 2 (sint+^12 sin2t

+^13 sin3t
+^14 sin4t+···)







  1. Determine the Fourier series defined by


f(x)=

{
1 −x, −π<x< 0

1 +x, 0 <x<π
which is periodic of period 2π.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=

π
2

+ 1


4
π

(
cosx+

1
32

cos3x

+

1
52

cos5x+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. In the Fourier series of Problem 3, letx= 0
    and deduce a series forπ^2 /8.
    [
    π^2
    8


= 1 +

1
32

+

1
52

+

1
72

+···

]

68.3 Half-range Fourier series


(a) When a function is defined over the range say 0
toπinstead of from 0 to 2πit may be expanded
in a series of sine terms only or of cosine terms
only. The series produced is called ahalf-range
Fourier series.
Free download pdf