Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

The complex or exponential form of a Fourier series 645


Rearranging gives:

f(x)=a 0 +

∑∞

n= 1

[(
an−jbn
2

)
ej

2 πLnx

+

(
an+jbn
2

)
e−j

2 πLnx

]
(5)

The Fourier coefficientsa 0 ,anandbnmay be replaced
by complex coefficientsc 0 ,cnandc−nsuch that


c 0 =a 0 (6)

cn=

an−jbn
2

(7)

and c−n=

an+jbn
2

(8)

wherec−nrepresents the complex conjugate ofcn(see
page 216).
Thus, equation (5) may be rewritten as:


f(x)=c 0 +

∑∞

n= 1

cnej

2 πnx
L +

∑∞

n= 1

c−ne−j

2 πnx
L (9)

Since e^0 =1, thec 0 term can be absorbed into the sum-
mation since it is just another term to be added to the
summation of thecnterm whenn=0. Thus,


f(x)=

∑∞

n= 0

cnej

2 πnx
L +

∑∞

n= 1

c−ne−j

2 πnx
L (10)

Thec−nterm may be rewritten by changing the limits
n=1ton=∞ton=−1ton=−∞.Sincenhas been
made negative, the exponential term becomes ej


2 πnx
L
andc−nbecomescn. Thus,


f(x)=

∑∞

n= 0

cnej

2 πLnx
+

−∞∑

n=− 1

cnej

2 πLnx

Since the summations now extend from−∞to−1and
from 0 to+∞, equation (10) may be written as:


f(x)=

∑∞

n=−∞

cnej

2 πnx
L (11)

Equation (11) is thecomplexorexponential formof
the Fourier series.


71.3 The complex coefficients


From equation (7), the complex coefficientcnwas
defined as:cn=

an−jbn
2
However,anandbnare defined (from page 630) by:

an=

2
L

∫ L
2
−L 2

f(x)cos

(
2 πnx
L

)
dx and

bn=

2
L

∫ L 2

−L 2

f(x)sin

(
2 πnx
L

)
dx

Thus, cn=




2
L

∫L 2
−L 2 f(x)cos

( 2 πnx
L

)
dx

−j^2 L

∫L 2
−L 2
f(x)sin

( 2 πnx
L

)
dx




2

=

1
L

∫ L 2

−L 2

f(x)cos

(
2 πnx
L

)
dx

−j

1
L

∫ L
2
−L 2

f(x)sin

(
2 πnx
L

)
dx

From equations (3) and (4),

cn=

1
L

∫ L
2
−L 2

f(x)

(
ej

2 πLnx
+e−j

2 πLnx

2

)
dx

−j

1
L

∫ L
2
−L 2

f(x)

(
ej

2 πnx
L −e−j
2 πnx
L
2 j

)
dx

from which,

cn=

1
L

∫ L
2
−L 2

f(x)

(
ej

2 πnx
L +e−j
2 πnx
L
2

)
dx


1
L

∫ L
2
−L 2

f(x)

(
ej

2 πnx
L −e−j
2 πnx
L
2

)
dx

i.e. cn=

1
L

∫ L
2
−L 2

f(x)e−j

2 πLnx
dx (12)

Careneeds to betaken when determiningc 0 .Ifnappears
in the denominator of an expression the expansion can
beinvalidwhenn=0.In such circumstances it is usually
simpler to evaluatec 0 by using the relationship:

c 0 =a 0 =

1
L

∫ L 2

−L 2

f(x)dx (from page 630). (13)
Free download pdf