Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

648 Higher Engineering Mathematics


Hence,cn=

∫ 1

0

te−j^2 πnt=uv−


vdu

=

[
t

e−j^2 πnt
−j 2 πn

] 1

0


∫ 1

0

e−j^2 πnt
−j 2 πn

dt

=

[
t

e−j^2 πnt
−j 2 πn


e−j^2 πnt
(−j 2 πn)^2

] 1

0

=

(
e−j^2 πn
−j 2 πn


e−j^2 πn
(−j 2 πn)^2

)


(
0 −

e^0
(−j 2 πn)^2

)

From equation (2),

cn=

(
cos2πn−jsin2πn
−j 2 πn


cos2πn−jsin2πn
(−j 2 πn)^2

)

+

1
(−j 2 πn)^2

However, cos2πn=1andsin2πn=0 for all positive
and negative integer values ofn.

Thus,cn=

1
−j 2 πn


1
(−j 2 πn)^2

+

1
(−j 2 πn)^2

=

1
−j 2 πn

=

1 (j)
−j 2 πn(j)

i.e. cn=

j
2 πn

From equation (13),

c 0 =a 0 =

1
L

∫ L
2
−L 2

f(t)dt

=

1
L

∫L

0

f(t)dt=

1
1

∫ 1

0

tdt

=

[
t^2
2

] 1

0

=

[
1
2

− 0

]
=

1
2

Hence, the complex Fourier series is given by:

f(t)=

∑∞

n=−∞

cnej

2 πnt
L from equation (11)

i.e. f(t)=

1
2

+

∑∞

n=−∞

j
2 πn

ej^2 πnt

=

1
2

+

j
2 π

∑∞

n=−∞

ej^2 πnt
n

Problem 3. Show that the exponential form of the
Fourier series for the waveform described by:

f(x)=

{
0when− 4 ≤x≤ 0
10 when 0≤x≤ 4

and has a period of 8, is given by:

f(x)=

∑∞
n=−∞

5 j

(cosnπ− 1 )ej

nπx

(^4).
From equation (12),
cn=
1
L
∫ L
2
−L 2
f(x)e−j
2 πLnx
dx


1
8
[∫ 0
− 4
0e−j
πnx 4
dx+
∫ 4
0
10e−j
πnx 4
dx
]


10
8
[
e−j
πnt
4
−jπ 4 n
] 4
0


10
8
(
4
−jπn
)[
e−jπn− 1
]


5 j
−j^2 πn
(
e−jπn− 1
)


5 j
πn
(
e−jπn− 1
)
From equation (2), e−jθ=cosθ−jsinθ, thus
e−jπn=cosπn−jsinπn=cosπn for all integer
values ofn. Hence,
cn=
5 j
πn
(
e−jπn− 1
)


5 j
πn
(cosnπ− 1 )
From equation (11), the exponential Fourier series is
given by:
f(x)=
∑∞
n=−∞
cnej
2 πnx
L


∑∞
n=−∞
5 j

(cosnπ−1)ej
nπx
4

Free download pdf