Essential formulae 671
(ii) differentiate the trial series to find y′
andy′′,
(iii) substitutethe results in thegiven differential
equation,
(iv) equate coefficients of corresponding powers
of the variable on each side of the equa-
tion: this enables indexcand coefficients
a 1 ,a 2 ,a 3 , ...from the trial solution, to be
determined.Bessel’s equation:
The solution ofx^2
d^2 y
dx^2+xdy
dx+(x^2 −v^2 )y=0is:y=Axv{
1 −x^2
22 (v+ 1 )+x^4
24 ×2!(v+ 1 )(v+ 2 )−x^6
26 ×3!(v+ 1 )(v+ 2 )(v+ 3 )+···}+Bx−v{
1 +x^2
22 (v− 1 )+x^4
24 ×2!(v− 1 )(v− 2 )+x^6
26 ×3!(v− 1 )(v− 2 )(v− 3 )+···}or, in terms ofBessel functionsandgamma functions:
y=AJv(x)+BJ−v(x)=A(x
2)v{ 1
(v+ 1 )−x^2
22 (1!)(v+ 2 )+x^4
24 (2!)(v+ 4 )−···}+B(x
2)−v{ 1
( 1 −v)−x^2
22 (1!)( 2 −v)+
x^4
24 (2!)( 3 −v)−···}In general terms:
Jv(x)=(x
2)v∑∞k= 0(− 1 )kx^2 k
22 k(k!)(v+k+ 1 )and J−v(x)=(x
2)−v∑∞k= 0(− 1 )kx^2 k
22 k(k!)(k−v+ 1 )and in particular:Jn(x)=(x
2)n{ 1
n!−1
(n+ 1 )!(x
2) 2+1
(2!)(n+ 2 )!(x
2) 4
−···}J 0 (x)= 1 −x^2
22 (1!)^2+x^4
24 (2!)^2−x^6
26 (3!)^2+···and J 1 (x)=x
2−x^3
23 (1!)(2!)+x^5
25 (2!)(3!)−x^7
27 (3!)(4!)+···Legendre’s equation:
The solution of( 1 −x^2 )d^2 y
dx^2− 2 xdy
dx+k(k+ 1 )y= 0is:
y=a 0{
1 −k(k+ 1 )
2!x^2+k(k+ 1 )(k− 2 )(k+ 3 )
4!x^4 −···}+a 1{
x−(k− 1 )(k+ 2 )
3!x^3+(k− 1 )(k− 3 )(k+ 2 )(k+ 4 )
5!x^5 −···}Rodrigue’s formula:
Pn(x)=1
2 nn!dn(x^2 − 1 )n
dxnStatistics and Probability
Mean, median, mode and standard
deviation:
Ifx=variate andf=frequency then:meanx ̄=∑
fx
∑
f
Themedianis the middle term of a ranked set of data.