Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Essential formulae 671


(ii) differentiate the trial series to find y′
andy′′,
(iii) substitutethe results in thegiven differential
equation,
(iv) equate coefficients of corresponding powers
of the variable on each side of the equa-
tion: this enables indexcand coefficients
a 1 ,a 2 ,a 3 , ...from the trial solution, to be
determined.

Bessel’s equation:


The solution ofx^2


d^2 y
dx^2

+x

dy
dx

+(x^2 −v^2 )y=0is:

y=Axv

{
1 −

x^2
22 (v+ 1 )

+

x^4
24 ×2!(v+ 1 )(v+ 2 )


x^6
26 ×3!(v+ 1 )(v+ 2 )(v+ 3 )

+···

}

+Bx−v

{
1 +

x^2
22 (v− 1 )

+

x^4
24 ×2!(v− 1 )(v− 2 )

+

x^6
26 ×3!(v− 1 )(v− 2 )(v− 3 )

+···

}

or, in terms ofBessel functionsandgamma functions:


y=AJv(x)+BJ−v(x)

=A

(x
2

)v{ 1
(v+ 1 )


x^2
22 (1!)(v+ 2 )

+

x^4
24 (2!)(v+ 4 )

−···

}

+B

(x
2

)−v{ 1
( 1 −v)


x^2
22 (1!)( 2 −v)

+
x^4
24 (2!)( 3 −v)

−···

}

In general terms:


Jv(x)=

(x
2

)v∑∞

k= 0

(− 1 )kx^2 k
22 k(k!)(v+k+ 1 )

and J−v(x)=

(x
2

)−v∑∞

k= 0

(− 1 )kx^2 k
22 k(k!)(k−v+ 1 )

and in particular:

Jn(x)=

(x
2

)n{ 1
n!


1
(n+ 1 )!

(x
2

) 2

+

1
(2!)(n+ 2 )!

(x
2

) 4
−···

}

J 0 (x)= 1 −

x^2
22 (1!)^2

+

x^4
24 (2!)^2


x^6
26 (3!)^2

+···

and J 1 (x)=

x
2


x^3
23 (1!)(2!)

+

x^5
25 (2!)(3!)


x^7
27 (3!)(4!)

+···

Legendre’s equation:


The solution of( 1 −x^2 )

d^2 y
dx^2

− 2 x

dy
dx

+k(k+ 1 )y= 0

is:
y=a 0

{
1 −

k(k+ 1 )
2!

x^2

+

k(k+ 1 )(k− 2 )(k+ 3 )
4!

x^4 −···

}

+a 1

{
x−

(k− 1 )(k+ 2 )
3!

x^3

+

(k− 1 )(k− 3 )(k+ 2 )(k+ 4 )
5!

x^5 −···

}

Rodrigue’s formula:


Pn(x)=

1
2 nn!

dn(x^2 − 1 )n
dxn

Statistics and Probability


Mean, median, mode and standard


deviation:


Ifx=variate andf=frequency then:

meanx ̄=


fx

f
Themedianis the middle term of a ranked set of data.
Free download pdf