Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

72 Higher Engineering Mathematics


Problem 11. Develop a series for sinhxusing
Maclaurin’s series.

f(x)=sinhxf( 0 )=sinh0=

e^0 −e−^0
2

= 0

f′(x)=coshxf′( 0 )=cosh0=

e^0 +e−^0
2
= 1
f′′(x)=sinhxf′′( 0 )=sinh0= 0
f′′′(x)=coshxf′′′( 0 )=cosh0= 1
fiv(x)=sinhxfiv( 0 )=sinh0= 0
fv(x)=coshxfv( 0 )=cosh 0= 1
Substituting in equation (5) gives:

sinhx=f( 0 )+xf′( 0 )+

x^2
2!

f′′( 0 )+

x^3
3!

f′′′( 0 )

+

x^4
4!

fiv( 0 )+

x^5
5!

fv( 0 )+···

= 0 +(x)( 1 )+

x^2
2!

( 0 )+

x^3
3!

( 1 )+

x^4
4!

( 0 )

+

x^5
5!

( 1 )+···

i.e.sinhx=x+

x^3
3!

+

x^5
5!

+···

(as obtained in Section 5.5, page 49)

Problem 12. Produce a power series for cos^22 x
as far as the term inx^6.

From double angle formulae, cos2A=2cos^2 A−1(see
Chapter 17).

from which, cos^2 A=

1
2

( 1 +cos2A)

and cos^22 x=

1
2

( 1 +cos 4x)

From Problem 1,

cosx= 1 −

x^2
2!

+

x^4
4!


x^6
6!

+···

hence cos4x= 1 −

( 4 x)^2
2!

+

( 4 x)^4
4!


( 4 x)^6
6!

+···

= 1 − 8 x^2 +

32
3

x^4 −

256
45

x^6 +···

Thus cos^22 x=

1
2

( 1 +cos 4x)

=

1
2

(
1 + 1 − 8 x^2 +

32
3

x^4 −

256
45

x^6 +···

)

i.e.cos^22 x= 1 − 4 x^2 +

16
3

x^4 −

128
45

x^6 +···

Now try the following exercise

Exercise 32 Further problemson
Maclaurin’s series


  1. Determine the first four terms of the power
    series for sin2x⎡using Maclaurin’s series.




sin2x= 2 x−

4
3

x^3 +

4
15

x^5


8
315

x^7 +···





  1. Use Maclaurin’s series to produce a power
    series for cosh 3xas far as the term inx^6.
    [
    1 +


9
2

x^2 +

27
8

x^4 +

81
80

x^6

]


  1. Use Maclaurin’stheorem to determine the first
    three terms of the power series for ln[ ( 1 +ex).
    ln2+


x
2

+

x^2
8

]


  1. Determine the power series for cos 4tas far as
    the term int^6.
    [
    1 − 8 t^2 +


32
3

t^4 −

256
45

t^6

]


  1. Expand e


3
2 xin a power series as far as the term

inx^3.

[
1 +

3
2

x+

9
8

x^2 +

9
16

x^3

]


  1. Develop, as far as the term inx^4 , the power
    series for sec2x.


[
1 + 2 x^2 +

10
3

x^4

]


  1. Expand e^2 θcos3θas far as the term inθ^2 using
    Maclaurin’s series.


[
1 + 2 θ−

5
2

θ^2

]


  1. Determine thefirst threeterms of the series for
    sin^2 xby applying Maclaurin’s theorem.
    [
    x^2 −


1
3

x^4 +

2
45

x^6 ···

]


  1. UseMaclaurin’s series to determinetheexpan-
    sion of( 3 + 2 t)^4.
    [
    81 + 216 t+ 216 t^2 + 96 t^3 + 16 t^4


]
Free download pdf