Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Maclaurin’s series 73


8.5 Numerical integration using


Maclaurin’s series


The value of many integrals cannot be determined using
the various analytical methods. In Chapter 45, the trape-
zoidal, mid-ordinate and Simpson’s rules are used to
numerically evaluate such integrals. Another method of
finding the approximate value of a definite integral is to
express the functionas a power series usingMaclaurin’s
series, and then integrating each algebraic term in turn.
This is demonstrated in thefollowingworked problems.
As a reminder, the general solutionof integrals of the
form



axndx,whereaandnare constants, is given by:

axndx=

axn+^1
n+ 1

+c

Problem 13. Evaluate

∫ 0. 4
0. 1 2e

sinθdθ, correct to
3 significant figures.

A power series for esinθis firstly obtained usingMaclau-
rin’s series.


f(θ )=esinθ f( 0 )=esin 0=e^0 = 1

f′(θ )=cosθesinθ f′( 0 )=cos 0esin0=( 1 )e^0 = 1

f′′(θ )=(cosθ)(cosθesinθ)+(esinθ)(−sinθ),
by the product rule,
=esinθ(cos^2 θ−sinθ);

f′′( 0 )=e^0 (cos^20 −sin0)= 1

f′′′(θ )=(esinθ)[(2cosθ(−sinθ)−cosθ)]

+(cos^2 θ−sinθ)(cosθesinθ)

=esinθcosθ[−2sinθ− 1 +cos^2 θ−sinθ]

f′′′( 0 )=e^0 cos0[( 0 − 1 + 1 − 0 )]= 0

Hence from equation (5):


esinθ=f( 0 )+θf′( 0 )+

θ^2
2!

f′′( 0 )+

θ^3
3!

f′′′( 0 )+···

= 1 +θ+

θ^2
2

+ 0

Thus

∫ 0. 4

0. 1

2esinθdθ=

∫ 0. 4

0. 1

2

(
1 +θ+

θ^2
2

)

=

∫ 0. 4

0. 1

( 2 + 2 θ+θ^2 )dθ

=

[
2 θ+
2 θ^2
2

+
θ^3
3

] 0. 4

0. 1

=

(
0. 8 +( 0. 4 )^2 +

( 0. 4 )^3
3

)


(
0. 2 +( 0. 1 )^2 +

( 0. 1 )^3
3

)

= 0. 98133 − 0. 21033

= 0. 771 ,correct to 3 significant figures.

Problem 14. Evaluate

∫ 1

0

sinθ
θ

dθusing
Maclaurin’s series, correct to 3 significant figures.

Let f(θ )=sinθ f( 0 )= 0
f′(θ )=cosθ f′( 0 )= 1
f′′(θ )=−sinθ f′′( 0 )= 0
f′′′(θ )=−cosθ f′′′( 0 )=− 1
fiv(θ )=sinθ fiv( 0 )= 0
fv(θ )=cosθ fv( 0 )= 1

Hence from equation (5):

sinθ=f( 0 )+θf′( 0 )+

θ^2
2!

f′′( 0 )+

θ^3
3!

f′′′( 0 )

+

θ^4
4!

fiv( 0 )+

θ^5
5!

fv( 0 )+···

= 0 +θ( 1 )+

θ^2
2!

( 0 )+

θ^3
3!

(− 1 )

+

θ^4
4!

( 0 )+

θ^5
5!

( 1 )+···

i.e. sinθ=θ−

θ^3
3!

+

θ^5
5!

−···

Hence
∫ 1

0

sinθ
θ


=

∫ 1

0

(
θ−

θ^3
3!

+

θ^5
5!


θ^7
7!

+···

)

θ


=

∫ 1

0

(
1 −

θ^2
6
+

θ^4
120

θ^6
5040
+···

)
Free download pdf