Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

74 Higher Engineering Mathematics


=

[
θ−

θ^3
18

+

θ^5
600


θ^7
7 ( 5040 )

+···

] 1

0

= 1 −

1
18

+

1
600


1
7 ( 5040 )

+···

=0.946,correct to 3 significant figures.

Problem 15. Evaluate

∫ 0. 4
0 xln(^1 +x)dxusing
Maclaurin’s theorem, correct to 3 decimal places.

From Problem 6,

ln( 1 +x)=x−

x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

Hence

∫ 0. 4

0

xln( 1 +x)dx

=

∫ 0. 4

0

x

(
x−

x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

)
dx

=

∫ 0. 4

0

(
x^2 −

x^3
2

+

x^4
3


x^5
4

+

x^6
5

−···

)
dx

=

[
x^3
3


x^4
8

+

x^5
15


x^6
24

+

x^7
35

−···

] 0. 4

0

=

(
( 0. 4 )^3
3


( 0. 4 )^4
8

+

( 0. 4 )^5
15


( 0. 4 )^6
24

+

( 0. 4 )^7
35

−···

)
−( 0 )

= 0. 02133 − 0. 0032 + 0. 0006827 −···
=0.019,correct to 3 decimal places.

Now try the following exercise

Exercise 33 Further problems on
numerical integration using Maclaurin’s
series


  1. Evaluate


∫ 0. 6
0. 2 3e

sinθdθ, correct to 3 decimal
places, using Maclaurin’s series. [1.784]


  1. Use Maclaurin’s theorem to expand cos2θand
    hence evaluate, correct to 2 decimal places,
    ∫ 1


0

cos2θ

θ

1
3

dθ. [0.88]


  1. Determine the value of


∫ 1
0


θcosθdθ,cor-
rect to 2 significant figures, using Maclaurin’s
series. [0.53]


  1. Use Maclaurin’s theorem to expand√
    xln(x+ 1 ) as a power series. Hence
    evaluate, correct to 3 decimal places,∫

  2. 5
    0



xln(x+ 1 )dx. [0.061]

8.6 Limiting values

It is sometimes necessary to find limits of the form
lim
x→a

{
f(x)
g(x)

}
,wheref(a)=0andg(a)=0.
For example,

lim
x→ 1

{
x^2 + 3 x− 4
x^2 − 7 x+ 6

}
=

1 + 3 − 4
1 − 7 + 6

=

0
0

and^00 is generally referred to as indeterminate.
For certain limits a knowledge of series can sometimes
help.
For example,

lim
x→ 0

{
tanx−x
x^3

}

≡lim
x→ 0


⎪⎨

⎪⎩

x+

1
3

x^3 +···−x
x^3


⎪⎬

⎪⎭
from Problem 5

=lim
x→ 0


⎪⎨

⎪⎩

1
3

x^3 +···
x^3


⎪⎬

⎪⎭

=lim
x→ 0

{
1
3

}
=

1
3

Similarly,

lim
x→ 0

{
sinhx
x

}

≡lim
x→ 0


⎪⎪

⎪⎪

x+

x^3
3!

+

x^5
5!

+
x


⎪⎪

⎪⎪

from Problem 11

=lim
x→ 0

{
1 +

x^2
3!

+

x^4
5!

+···

}
= 1
Free download pdf