The Art of R Programming

(WallPaper) #1

362 INDEX


default arguments, 9–10
deleting
list elements, 88 –90
matrix rows and columns, 73–7 8
a node from binary search tree, 1 81
density estimates, same graph, 264–266
DES (discrete-event simulation),
writing, 164–171
det() linear algebra function, 197
dev.off() function, 3
df parameter, mapsound() function, 116
dgbsendeditcmd() function, 257–25 8
diag() linear algebra function, 197–19 8
diff() function, 50–51
dim argument, array() function, 134
dim attribute, matrix class, 79
dimcode argument, apply() function, 70
dimension reduction, avoiding, 8 0– 81
dim() function, 79
dimnames argument, array() function, 134
dimnames() function, 131
dir() function, 245
discrete-event simulation (DES),
writing, 164–171
discrete-valued time series, predicting,
37–39
do.call() function, 133
dosim() function, 165
double brackets, 8 7– 88
drop argument, 6 8 , 81
dtdbg debugging tool, use of string utili-
ties in, 257–259
dual-core machines, 341
duplicate() function, 315
dynamic task assignment, 34 8 –350

E
each argument, rep() function, 34
edit() function, 150, 1 8 6–1 87
edtdbg package, 300–302
eigen() function, 197, 201
eigenvalues, 201
eigenvectors, 201
elements
list, adding and deleting, 88 –90
vectors
adding and deleting, 26
naming, 56
embarrassingly parallel applications
defined, 347–34 8
turning general problems into, 350

employee database example, 111–112
encapsulation, 207
end of file (EOF), 23 8
envir argument
get() function, 159
ls() function, 155
environment and scope, 151–159
functions have (almost) no side
effects, 156–157
function to display contents of call
frame example, 157–159
ls() function, 155–156
scope hierarchy, 152–155
top-level environment, 152
EOF (end of file), 23 8
ess-tracebug package, 300
event list, DES, 164
event-oriented paradigm, 164
example() function, 21–22
exists() function, 230
expandut() function, 21 8
explicit functions, graphing, 276–277
exp() math function, 1 89
extracting
subdata frames, 104–105
subtables, 131–134

F
factorial() math function, 190
factors, 121
functions, 123, 136
aggregate(), 136
by(), 126–127
cut(), 136–137
split(), 124–126
tapply(), 123–124
levels and, 121–122
fangyan, 115
fargs argument, apply() function, 70
f argument, apply() function, 70
Fedora, installing R on, 353–354
file.exists() function, 245
file.info() function, 245, 246
filetype criterion, Google, 24
filter() function, 32 8
filtering, 45–4 8
defined, 25
generating filtering indices, 45–47
matrices, 66–69
withsubset() function, 47
with which() selection function, 47–4 8
Free download pdf