CHAP. 3: FUNDAMENTALS OF THERMODYNAMICS [CONTENTS] 101
Example
Calculate the absolute molar entropy of liquid sulphur dioxide atT = 200 K and at the stan-
dard pressure 101.325 kPa. Data: T 1 = 15K, Cp(s)m = 3. 77 J mol−^1 K−^1 at T 1 , ∆S(s) =
84. 2 J mol−^1 K−^1 , Tfus= 197. 64 K,∆fusH= 7403J mol−^1 ,C(l)pm= 87. 2 J mol−^1 K−^1. Sulphur
dioxide exists in only one crystalline form.
Solution
We determine the constant in the Debye relation (3.62) from the condition
constT^3 =Cp(s)m at T=T 1.
Individual entropy contributions have the following values:
S(T 1 ) =
∫T 1
0
constT^3
T
dT=
constT 13
3
=
3. 77
3
= 1.257 Jmol−^1 K−^1.
∆fusS=
∆fusH
Tfus
=
7403
197. 64
= 37.457 Jmol−^1 K−^1.
∆S(l)=
∫T
Tfus
Cp(l)m
T
dT= 87.2 ln
200
197. 64
= 1.035 Jmol−^1 K−^1.
The absolute molar entropy of liquid sulphur dioxide isSm(T, pst) = 1.257 + 84.200 + 37.457
+ 1.035 = 123.949 J mol−^1 K−^1.
3.5.6 Helmholtz energy
3.5.6.1 Dependence on temperature and volume
The Helmholtz energy is calculated from the definition (3.12), and from the dependence of
internal energy (3.68) and entropy (3.79) onTandV
F(T, V) =F(T 1 , V 1 ) + [U(T, V)−T S(T, V)]−[U(T 1 , V 1 )−T 1 S(T 1 , V 1 )]. (3.92)