CHAP. 3: FUNDAMENTALS OF THERMODYNAMICS [CONTENTS] 91
3.5.1.2 Cpdependence on pressure
Cp(T, p 2 ) =Cp(T, p 1 )−
∫p 2
p 1
T
(
∂^2 V
∂T^2
)
p
dp , [T]. (3.63)
3.5.1.3 CV dependence on volume
CV(T, V 2 ) =CV(T, V 1 ) +
∫V 2
V 1
T
(
∂^2 p
∂T^2
)
V
dV , [T]. (3.64)
3.5.1.4 Relations between heat capacities.
Cp = CV+
[
p+
(
∂U
∂V
)
T
](
∂V
∂T
)
p
=CV+T
(
∂p
∂T
)
V
(
∂V
∂T
)
p
= CV−T
(
∂V
∂T
) 2
( p
∂V
∂p
)
T
=CV−T
(
∂p
∂T
) 2
( V
∂p
∂Vm
)
T
. (3.65)
The following relation applies between heat capacities and the coefficients of isothermal
compressibilityβ[see2.1.7] and thermal expansionα[see2.1.6]
Cp=CV+T V
α^2
β
. (3.66)
3.5.1.5 Ideal gas.
The heat capacities of an ideal gas are functions of temperature only. Relations (3.65) rearrange
to theMayer relation
C◦pm(T) =CV m◦ (T) +R. (3.67)