Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

88 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF PHYSICS


whereψ= (ψ 1 ,ψ 2 ,ψ 3 ,ψ 4 )Tis the Dirac spinor, andγμ= (γ^0 ,γ^1 ,γ^2 ,γ^3 )is the Dirac matri-
ces, defined by


(2.5.39) γ^0 =


(


I 0


0 −I


)


, γk=

(


0 σk
−σk 0

)


fork= 1 , 2 , 3 ,

where the Pauli matrices are given by


σ 1 =

(


0 1


1 0


)


, σ 2 =

(


0 −i
i 0

)


, σ 3 =

(


1 0


0 − 1


)


.


The Lagrange action of (2.5.38) is


(2.5.40) L=



M^4

ψ(iγμ∂μ−

mc
h ̄



−gdx,

whereψ=ψ†γ^0.
The Lagrange density of (2.5.40) is


L=ψ

(


iγμ∂μ−

mc
̄h

)


ψ

is Lorentz invariant. To see this, recall the spinor transformation defined by (2.2.63):


̃xμ=Lνμxν ⇒ψ ̃=Rψ,

which satisfies that (2.2.62):


(2.5.41) (iγμ ̃∂μ−


mc
h ̄

)ψ ̃=R(iγμ∂μ−

mc
h ̄

)ψ,

where ̃∂μ=∂/∂x ̃μ,Ris as in (2.2.67). By (2.2.68) and


(2.5.42) R†γ^0 =γ^0 R†, (γ^0 )†=γ^0.


It follows from (2.5.41) and (2.4.2) that


ψ ̃(iγμ∂ ̃μ−

mc
h ̄

)ψ ̃=ψ†R†γ^0 R

(


iγμ∂μ−

mc
h ̄

)


ψ

=(byψ†γ^0 =ψ)

=ψ(iγμ∂μ−

mc
h ̄

)ψ.

It implies that the Lagrange action (2.5.40) is Lorentz invariant.
It is easy to see that


δL
δ ψ∗

= 0 ⇔ (iγμ∂μ−

mc
̄h

)ψ= 0.
Free download pdf