2.6. PRINCIPLE OF HAMILTONIAN DYNAMICS (PHD) 103
whereψ= (ψ 1 ,ψ 2 )T, andψk=ψk^1 +iψ^2 k( 1 ≤k≤ 2 ). The Hamilton energyHof (2.6.51)
is in the form
H=
∫R^3iψ†(~σ·∇)ψdx(2.6.52)
=
∫R^3[
∂ ψ 12
∂x^1ψ 21 +∂ ψ 22
∂x^1ψ 11 +∂ ψ^21
∂x^2ψ^22 +∂ ψ 11
∂x^2ψ 21 +∂ ψ 12
∂x^3ψ 11 +∂ ψ 21
∂x^3ψ 11 +∂ ψ^12
∂x^3ψ^22]
dx.The Hamilton equations are
1
c∂ ψk^1
∂t=
δ
δ ψk^2H,
1
c∂ ψk^2
∂t=−
δ
δ ψk^1H,
fork= 1 , 2 ,which, in view of for (2.6.52), are in the form:
(2.6.53)
1
c∂ ψ 11
∂t=
(
∂ ψ^12
∂x^1+
∂ ψ^22
∂x^2+
∂ ψ 11
∂x^3)
,
1
c∂ ψ 12
∂t=
(
∂ ψ^22
∂x^1−
∂ ψ^12
∂x^2+
∂ ψ 12
∂x^3)
,
1
c∂ ψ 21
∂t=
(
∂ ψ^11
∂x^1−
∂ ψ^21
∂x^2−
∂ ψ 21
∂x^3)
,
1
c∂ ψ 22
∂t=
(
∂ ψ^21
∂x^1+
∂ ψ^11
∂x^2−
∂ ψ 22
∂x^3)
.
It is readily to check that (2.6.53) and (2.6.51) are equivalent.
3.Dirac equations:(2.6.54) ih ̄
∂ ψ
∂t=−ihc ̄ (~α·∇)ψ+mc^2 α 0 ψ,where~α,α 0 are as in (2.2.58),ψ= (ψ 1 ,ψ 2 ,ψ 3 ,ψ 4 )T, and
ψk=ψk^1 +iψk^2 for 1≤k≤ 4.The Hamilton energy of (2.6.54) is defined by
(2.6.55) H=
∫R^3[
−i ̄hcψ†(~α·∇)ψ+mc^2 ψ†α 0 ψ]
dx.It is clear that the expansions of (2.6.54) in terms of real and imaginary parts are in the form
h ̄∂ ψk^1
∂t=−
δ
δ ψk^2H,
h ̄∂ ψk^2
∂t=
δ
δ ψk^1H,
for 1≤k≤ 4 ,