2.6. PRINCIPLE OF HAMILTONIAN DYNAMICS (PHD) 105
whereHreads
H=
∫R^3H(ψ,Dψ)dx.When taking the variation, the functional
̃L=∫QTiψ∗ψ ̇dxdt=
∫QTi(ψ^1 −iψ^2 )(ψ ̇^1 +iψ ̇^2 )dxdt=
∫QT[
i
2∂
∂t|ψ|^2 −∂
∂t(ψ^1 ψ^2 )+ 2 ψ^2 ψ ̇ 1]
dxdt=
∫T0∫R^32 ψ^2 ψ ̇^1 dxdt,whereQT=R^3 ×( 0 ,T). Hence, the densityLin (2.6.60) is equivalent to
(2.6.61) L= 2 ̄hψ^2 ψ ̇^1 −H.
It follows from (2.6.61) that
(2.6.62)
ψ^2 =1
2 h ̄∂L/∂ψ ̇^1 ,ψ^2 ψ ̇^1 −1
2 h ̄L=
1
(^2) ̄h
H.
The relations (2.6.62) are what we expected.