Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

112 CHAPTER 3. MATHEMATICAL FOUNDATIONS


be the embedding function. Consider the vector product ofnvectors inRn:


[


∂~r
∂x^1

,···,


∂~r
∂xn

]


=






∣∣





~e 1 ··· ~en+ 1
∂ 1 r 1 ··· ∂ 1 rn+ 1
..
.

..


.


∂nr 1 ··· ∂nrn+ 1





∣∣





,


where{~e 1 ,···,~en+ 1 }is an orthogonal basis ofRn+^1. Then the volume elementΩdxis


Ωdx=





[


∂~r
∂x^1

,···,


∂~r
∂xn

]∣∣



∣dx.

Bygij=∂∂~xri·∂∂x~rj, the norm of the vector[∂ 1 ~r,···,∂n~r]is


|[∂ 1 ~r,···,∂n~r]|=


−g, g=det(gij).

Thus (3.1.14) follows.
We now verify the invariance of the volume element. Under thetransformation (3.1.9),


(3.1.15) dx ̃=dx ̃^1 ∧ ··· ∧d ̃xn


=

(


∂ φ^1
∂x^1
dx^1 +···+

∂ φ^1
∂xn
dxn

)


∧ ··· ∧


(


∂ φn
∂x^1
dx^1 +···+

∂ φn
∂xn
dxn

)


=det

(


∂ φi
∂xj

)


dx^1 ∧ ··· ∧dxn.

On the other hand,


(3.1.16) ( ̃gij) =


(


∂ ψi
∂yj

)


(gij)

(


∂ ψi
∂yj

)T


, ψ=φ−^1.

Hence


(3.1.17)



det(g ̃ij) =det

(


∂ φi
∂xj

)− (^1) √
det(gij).
We deduce from (3.1.15) and (3.1.17) that

det( ̃gij)d ̃x=



det(gij)dx.

Namely, both the volume and the volume element in (3.1.13)-(3.1.14) are invariant.



  1. The metric{gij}gives rise to an inner product structure on the tangent spaceof a
    Riemann manifoldM, and defines the angle between two tangent vectors.
    Letp∈Mbe a given point, andTpMbe the tangent space atp∈M. For two vectors
    X,Y∈TpM,


X={X^1 ,···,Xn}, Y={Y^1 ,···,Yn},
Free download pdf