3.2 Analysis on Riemannian Manifolds.
3.2 Analysis on Riemannian Manifolds
3.2.1 Sobolev spaces of tensor fields
The gravitational field equations are defined on a Riemannianmanifold. To study these equa-
tions, it is necessary to introduce various types of function spaces on manifolds, which pos-
sess different differentiability. In particular, we need to introduce the concept of weak deriva-
tives.
LetMbe ann-dimensional manifold with metric{gij}. The following functions are
defined onM.
1.Lpspaces. For a real numberp( 1 ≤p<∞), we denote
(3.2.1) Lp(M⊗pEN) =
{
u:M→M⊗pEN
∣
∣
∣
∫
M
|u|p
√
−gdx<∞
}
,
where
√
−gdxis the volume element, and|u|is the modulus ofu. For example, ifu:M→
TMis a vector field, then
|u|=|gijuiuj|^1 /^2.
The space (3.2.1) is endowed withLp-norm as
||u||Lp=
[∫
M
|u|p
√
−gdx
] 1 /p
.
By Functional Analysis, the spacesLp(M⊗pEN)are Banach spaces, and for 1<p<∞,
Lp(M⊗pEN)are reflective and separable. The dual spaces ofLp(M⊗pEN) ( 1 <p<∞)
are
Lp(M⊗pEN)∗=Lq(M⊗p(EN)∗),
Lq(M⊗pEN)∗=Lp(M⊗p(EN)∗),
1
p
+
1
q
= 1 ,
where(EN)∗is the dual space ofEN.
Forp=∞, we define that
L∞(M⊗pEN) ={u:M→M⊗pEN|uis bounded almost everywhere}.
The norm ofL∞(M⊗pEN)is defined by
||u||L∞=sup
M
|u|.
The spaceL∞(M⊗pEN)is a Banach space, but not reflective and separable. The space
L∞(M⊗pEN)is the dual space ofL^1 (M⊗pEN), i.e.
L^1 (M⊗pEN)∗=L∞(M⊗p(EN)∗).
2.Weakly differentiable functions. A fieldu∈Lp(M⊗pEN)is calledk-th order weakly
differentiable, if each componentujisk-th order weakly differentiable, i.e. for eachujthere
exists uniquely a functionφsuch that for allv∈C 0 ∞(M)we have
(3.2.2)
∫
M
φv
√
−gdx= (− 1 )k
∫
M
uj∂kvdx.