126 CHAPTER 3. MATHEMATICAL FOUNDATIONS
and[v]αis the H ̈older modulus:
[v]α= sup
x,y∈M,x 6 =y
|v(x)−v(y)|
|x−y|α
, 0 <α< 1.
A H ̈older continuous functionu∈C^0 ,α(M⊗pEN)is as shown in (3.2.6)-(3.2.7) with 0<
α<1.
The norm ofCk,α(M⊗pEN)( 0 <α≤ 1 )is given by
||u||Ck,α=||u||Ck+ [Dku]α ( 0 <α≤ 1 ),
where|| · ||Ckis the norm ofCk(M⊗pEN):
||u||Ck=
k
∑
|β|= 0
sup
M
|∂βu|.
3.2.2 Sobolev embedding theorem
In (3.2.6)-(3.2.7) we see that forΩ⊂Rn, a functionu∈W^1 ,p(Ω)does’t imply thatu∈Lq(Ω)
for anyq>p. For example, for the function
u=|x|−α, 0 <α<
1
2
, x∈Ω⊂R^3 , Ωbounded,
it is known that
∇u=|x|−
α+ 24
x∈L^2 (Ω).
Obviously we have
u∈W^1 ,^2 (Ω), u6∈Lq(Ω) ∀q>
n
α
.
The following embedding problem of Sobolev spaces providesa solution for this problem.
Theorem 3.7(Sobolev Embedding Theorem).LetMbe an n-dimensional compact mani-
fold. Then we have the embeddings:
(3.2.11) W^1 ,p(M⊗pEN)֒→
Lq(M⊗pEN) for 1 ≤q≤
np
n−p
if n>p,
Lq(M⊗pEN) for 1 ≤q<∞ if n=p,
C^0 ,α(M⊗pEN) forα= 1 −n/p if n<p.
Here C^0 ,α(M⊗pEN)are the Holder spaces. Moreover we have the following inequalities ̈
for the norms:
(3.2.12)
||u||Lq≤C||u||W 1 ,p for 1 ≤q≤
np
n−p
if n>p,
||u||Lq≤C||u||W 1 ,p for 1 ≤q<∞ if n=p,
||u||C 0 ,α≤C||u||W 1 ,p forα= 1 −n/p if n<p,
where C> 0 are constants depending on n,p and M.