Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

3.2. ANALYSIS ON RIEMANNIAN MANIFOLDS 129


3) the Laplace operator:DkDk=div·∇,

4) the Laplace-Beltrami operator:∆=dδ+δd,

5) the wave operator:=DμDμ, withDμbeing the 4-D gradient operator.

We now give a detailed account on the above operators.
1.Gradient operator.The gradient operator∇is a mapping of the following types:

(3.2.20)


∇k:W^1 ,p(TrkM)→Lp(Trk+^1 M),
∇k:W^1 ,p(TrkM)→Lp(Trk+ 1 M),

and∇kand∇khave the relation


∇k=gkl∇l, ∇k=gkl∇l,

and{gkl}the Riemann metric ofM.∇is expressed as


(3.2.21)


∇k= (D 1 ,···,Dn),
Djthe covariant derivative operators.

2.Divergence operator.The divergence operator div is a mapping of the following types:

(3.2.22)


div :W^1 ,p(Trk+^1 M)→Lp(TrkM),
div :W^1 ,p(Trk+ 1 M)→Lp(TrkM).

ForT={Tji 11 ······ijkr+^1 } ∈W^1 ,p(Trk+^1 M)andT={Tji 11 ······ijrk+ 1 } ∈W^1 ,p(Trk+ 1 M),


(3.2.23)


divT=DilTji 11 ······ijlr···ik+^1 , and

divT=DjlTji 11 ······ijkl···jk+ 1

Asu∈W^1 ,p(TM)andu∈W^1 ,p(T∗M), we can give the expressions of divuin the
following.
Letu∈W^1 ,p(TM),u= (u^1 ,···,un). Then by (3.2.23),


divu=Dkuk=

∂uk
∂xk

+Γkk juj.

By the Levi-Civita connections (2.3.25), the contraction


Γkk j=

1


2


gkl

∂gkl
∂xj

=


1


2 g

∂g
∂xj

=


1



−g



−g
∂xj

,


hereg=det(gij). Thus we have


(3.2.24) divu=
∂uk
∂xk


+


1



−g



−g
∂xk

uk=

1



−g

∂(



−guk)
∂xk

.

Free download pdf