4.3. UNIFIED FIELD MODEL BASED ON PID AND PRI 201
In Section4.1.3, we showed that the action functional obeys all the symmetric principles,
including principle of general relativity, the Lorentz invariance, theU( 1 )×SU( 2 )×SU( 3 )
gauge invariance and PRI, is the natural combination of the Einstein-Hilbert functional, the
U( 1 ),SU( 2 ),SU( 3 )Yang-Mills actions for the electromagnetic, weak and strong interac-
tions:
(4.3.1) L=
∫
M
[LEH+LEM+LW+LS]
√
−gdx.
Here
(4.3.2)
LEH=R+
8 πG
c^4
S,
LEM=−
1
4
Aμ νAμ ν+ψe(iγμDμ−m)ψe,
LW=−
1
4
GabwWμ νaWbμ ν+ψw(iγμDμ−ml)ψw,
LS=−
1
4
GklsSkμ νSμ νl+ψs(iγμDμ−mq)ψs,
whereRis the scalar curvature of the space-time Riemannian manifold(M,gμ ν)with Minkowski
type metric,Sis the energy-momentum density,GabwandGklsare theSU( 2 )andSU( 3 )metrics
as defined by (3.5.28),ψe,ψwandψsare the Dirac spinors for fermions participating in the
electromagnetic, weak, strong interactions, and
(4.3.3)
Aμ ν=∂μAν−∂νAμ,
Wμ νa =∂μWνa−∂νWμa+gwλbcaWμbWνc,
Skμ ν=∂μSkν−∂νSkμ+gsΛklrSlμSrν.
HereAμis the electromagnetic potential,Wμa( 1 ≤a≤ 3 )are theSU( 2 )gauge fields for the
weak interaction,Skμ( 1 ≤k≤ 8 )are theSU( 3 )gauge fields for the strong interaction,gwand
gsare the weak and strong charges, and
(4.3.4)
Dμψe= (∂μ+ieAμ)ψe,
Dμψw= (∂μ+igwWμaσa)ψw,
Dμψs= (∂μ+igsSkμτk)ψs,
whereσa( 1 ≤a≤ 3 )andτk( 1 ≤k≤ 8 )are the generators ofSU( 2 )andSU( 3 ).
Remark 4.8.For a vector fieldXμand an antisymmetric tensor fieldFμ ν, we have
∇μXν−∇νXμ=∂μXν−∂νXμ,
∇μFμ ν=∂μFμ ν,
where∇μis the Levi-Civita covariant derivative. Hence, the tensorfields in (4.3.3) and the
action (4.3.1) obey both the Einstein general relativity and the Lorentz invariance simultane-
ously under the transformations (4.1.21)-(4.1.22).