206 CHAPTER 4. UNIFIED FIELD THEORY
From the field theoretical point of view instead of the field particle point of view, the
coefficients in (4.3.21)-(4.3.24) should be
(4.3.27)
(α 1 w,α 2 w,α 3 w) =αw(ω 1 ,ω 2 ,ω 3 ),
(β 1 w,β 2 w,β 3 w) =βw(ω 1 ,ω 2 ,ω 3 ),
(γ 1 w,γ 2 w,γ 3 w) =γw(ω 1 ,ω 2 ,ω 3 ),
(δ 1 w,δ 2 w,δ 3 w) =δw(ω 1 ,ω 2 ,ω 3 ),
and
(4.3.28)
(αs 1 ,···,αs 8 ) =αs(ρ 1 ,···,ρ 8 ),
(β 1 s,···,β 8 s) =βs(ρ 1 ,···,ρ 8 ),
(γ 1 s,···,γ 8 s) =γs(ρ 1 ,···,ρ 8 ),
(δ 1 s,···,δ 8 s) =γs(ρ 1 ,···,ρ 8 ),
with the unit modules:
|ω|=
√
ω 12 +ω 22 +ω 32 = 1 ,
|ρ|=
√
ρ^21 +···+ρ^28 = 1 ,
using the Pauli matricesσaand the Gell-Mann matricesλkas the generators forSU( 2 )and
SU( 3 )respectively.
The twoSU( 2 )andSU( 3 )tensors in (4.3.27) and (4.3.28),
(4.3.29) ωa= (ω 1 ,ω 2 ,ω 3 ), ρk= (ρ 1 ,···,ρ 8 ),
are very important, by which we can obtainSU( 2 )andSU( 3 )representation invariant gauge
fields:
(4.3.30) Wμ=ωaWμa, Sμ=ρkSkμ.
which represent respectively the weak and the strong interaction potentials.
In view of (4.3.27)-(4.3.30), the unified field equations for the four fundamental forces
are written as
Rμ ν−
1
2
gμ νR+
8 πG
c^4
Tμ ν=
[
∇μ+
eαe
̄hc
Aμ+
gwαw
hc ̄
Wμ+
gsαs
hc ̄
Sμ
]
(4.3.31) φνg,
∂νAν μ−eJμ=
[
∂μ+
eβe
hc ̄
Aμ+
gwβw
hc ̄
Wμ+
gsβs
̄hc
Sμ
]
(4.3.32) φe,
∂νWν μa −
gw
hc ̄
(4.3.33) εbcagα βWα μbWβc−gwJμa
=
[
∂μ−
1
4
k^2 wxμ+
eγe
̄hc
Aμ+
gwγw
hc ̄
Wμ+
gsγs
hc ̄
Sμ
]
φwa,
∂νSkν μ−
gs
̄hc
(4.3.34) fijkgα βSα μi Sβj−gsQkμ
=
[
∂μ−
1
4
k^2 sxμ+
eδe
hc ̄
Aμ+
gwδw
̄hc
Wμ+
gsδs
hc ̄
Sμ
]
φsk,
(4.3.35) (iγμDμ−m)Ψ= 0.