4.5. STRONG INTERACTION POTENTIALS 221
whereδ(r)is the Dirac delta function,θμj is a constant tensor, inversely proportional to the
volume of the particle. Hence
ρkSμjλijkθiμ=Sμjθjμδ(r),
whereS
j
μ∼S
j
μ(^0 )takes the following average value
(4.5.14) S
j
μ=
1
|Bρw|
∫
Bρw
Sμjdv.
Hereρwis the radius of aw∗-weakton. Later, we shall see that
S
j
μ∼
1
r
asr→ 0.
Hence we deduce from (4.5.14) that
S
j
μ=ξ
j
μρ
− 1
w (ξ
j
μ is a constant tensor).
Thus, (4.5.13) becomes
(4.5.15) ∂μQμ=−
κ
ρw
δ(r) (ρwis the radius of aw∗-weakton),
whereκis a parameter given by
(4.5.16) κ=
2 gs
hc ̄
ξμjθ
μ
j,
andκis inversely proportional to the volume ofw∗-weakton.
Therefore, equation (4.5.12) is rewritten as
(4.5.17) −∆φs+k^20 φs=−
gsκ
ρw
δ(r),
whose solution is given by
(4.5.18) φs=−
gsκ
ρw
1
r
e−k^0 r.
Step 2. Solution of (4.5.11).The quantitygsQ=−gsQ 0 is the strong charge density of a
w∗-weakton, and without loss of generality, we assume that
(4.5.19) Q=β δ(r),
andβ>0 is a constant, inversely proportional to the volume of thew∗-weakton. Hence
(4.5.11) can be rewritten as
(4.5.20) −∆Φs=gsβ δ(r)+
gsA
ρw
1
r
e−k^0 r,