Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

222 CHAPTER 4. UNIFIED FIELD THEORY


whereAis a constant given by


A=


k 02 cτ κ
4
with physical dimension

1


L


.


AssumeΦs=Φs(r)is radially symmetric, then (4.5.20) becomes



1


r^2

d
dr

(r^2

d
dr

)Φs=gsβ δ(r)+

gsA
ρw

1


r

e−k^0 r,

whose solution takes the form


(4.5.21) Φs=gs


[


β
r


A


ρw

φ(r)e−k^0 r

]


,


whereφsolves


(4.5.22) φ′′+ 2


(


1


r

−k 0

)


φ′−

(


2 k 0
r

−k^20

)


φ=

1


r

.


Assume that the solutionφof (4.5.22) is given by


(4.5.23) φ=




k= 0

αkrk.

Insertingφin (4.5.22) and comparing the coefficients ofrk, then we obtain the following
relations


α 1 =k 0 α 0 +

1


2


,


α 2 =

1


2


k^20 α 0 +

1


3


k 0 ,
..
(4.5.24).


αk=

2 k 0
k+ 1
αk− 1 −k^20 αk− 2 , ∀k≥ 2.

whereα 0 is a free parameter with dimensionL. Hence


φ(r) =α 0 ( 1 +k 0 r+
r
2 α 0

+o(r)),

and often it is sufficient to take a first-order approximation.


Step 3. Strong interaction potential of w∗-weakton.The formula (4.5.21) with (4.5.23)-
(4.5.24) provides an accurate strong interaction potential for thew∗-weaktons:


(4.5.25) Φ 0 =gsβ


[


1


r


A 0


ρw

φ ̃(r)e−k^0 r

]


,


whereA 0 =Aα 0 /βis a dimensionless parameter, andφ ̃(r)is


φ ̃= 1 +k 0 r+
r
2 α 0

+o(r),
Free download pdf