222 CHAPTER 4. UNIFIED FIELD THEORY
whereAis a constant given by
A=
k 02 cτ κ
4
with physical dimension
1
L
.
AssumeΦs=Φs(r)is radially symmetric, then (4.5.20) becomes
−
1
r^2
d
dr
(r^2
d
dr
)Φs=gsβ δ(r)+
gsA
ρw
1
r
e−k^0 r,
whose solution takes the form
(4.5.21) Φs=gs
[
β
r
−
A
ρw
φ(r)e−k^0 r
]
,
whereφsolves
(4.5.22) φ′′+ 2
(
1
r
−k 0
)
φ′−
(
2 k 0
r
−k^20
)
φ=
1
r
.
Assume that the solutionφof (4.5.22) is given by
(4.5.23) φ=
∞
∑
k= 0
αkrk.
Insertingφin (4.5.22) and comparing the coefficients ofrk, then we obtain the following
relations
α 1 =k 0 α 0 +
1
2
,
α 2 =
1
2
k^20 α 0 +
1
3
k 0 ,
..
(4.5.24).
αk=
2 k 0
k+ 1
αk− 1 −k^20 αk− 2 , ∀k≥ 2.
whereα 0 is a free parameter with dimensionL. Hence
φ(r) =α 0 ( 1 +k 0 r+
r
2 α 0
+o(r)),
and often it is sufficient to take a first-order approximation.
Step 3. Strong interaction potential of w∗-weakton.The formula (4.5.21) with (4.5.23)-
(4.5.24) provides an accurate strong interaction potential for thew∗-weaktons:
(4.5.25) Φ 0 =gsβ
[
1
r
−
A 0
ρw
φ ̃(r)e−k^0 r
]
,
whereA 0 =Aα 0 /βis a dimensionless parameter, andφ ̃(r)is
φ ̃= 1 +k 0 r+
r
2 α 0
+o(r),