Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

248 CHAPTER 4. UNIFIED FIELD THEORY


which requires the following transformation ofSU( 2 )generators from the Pauli matricesσa:


σ ̃ 1
σ ̃ 2
σ ̃ 3


=√^1


2




1 i 0
0 −i 0
0 0


2






σ 1
σ 2
σ 3


.


In addition, we also need to obtain the massmZofZboson by diagonalizing the massive
matrix (4.6.64). It is easy to see that


(4.6.66)


UMU†=


c^2
h ̄^2





m^2 W 0 0 0
0 mW^2 0 0
0 0 m^2 Z 0
0 0 0 0




,


U=







√^1
2
√i
2 0 0
√^1
2 −
√i
2 0 0
0 0 α β
0 0 −β α






, α=

g 1
|g|
, β=

g 2
|g|

,


where|g|=



g^21 +g^22 , and

(4.6.67)


c^2 mW^2
̄h^2

=


a^2
2

g^21 ,

c^2 mZ
̄h^2

=


a^2
2

|g|^2.


  1. The field equations governingW±andZbosons are obtained from the equations
    (4.6.63) under the following transformation


(4.6.68)






Wμ+
Wμ−





=U






Wμ^1
Wμ^2
Wμ^3




 forU as in (4.6.66).

In this case, the equations (4.6.63) become


(4.6.69)







∂νWν μ+−

(mWc
h ̄

) 2


Wμ+
∂νWν μ−−

(mWc
h ̄

) 2


Wμ−
∂νZν μ−

(mZc
h ̄

) 2



∂νAν μ






=







√g^1
2 J

+
μ
√g^1
2 J


μ
|g|Jμ^0
−eJemμ






+higher order terms.

wheree=g 1 g 2 /|g|, and


J±μ=

1


2


(Jμ^1 ±iJμ^2 ),

J^0 μ=

1


2 |g|^2

(g^21 J^3 μ−g^22 JμL− 2 g^22 JμR),

Jemμ =

1


2


(Jμ^3 +JμL+ 2 JRμ).
Free download pdf