Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

6.2. FOUNDATIONS OF QUANTUM PHYSICS 345


Notice that
x 2 ∂ 2 −∂ 2 x 2 =x 3 ∂ 3 −∂ 3 x 3 =− 1.


Hence we get


(6.2.53) HˆLˆ 1 −Lˆ 1 Hˆ=h ̄^2 c(α^3 ∂ 2 −α^2 ∂ 3 ).


Similarly we have


(6.2.54)


HˆLˆ 2 −Lˆ 2 Hˆ= ̄h^2 c(α^1 ∂ 3 −α^3 ∂ 1 ),
HˆLˆ 3 −Lˆ 3 Hˆ= ̄h^2 c(α^2 ∂ 1 −α^1 ∂ 2 ).

On the other hand, we infer from (6.2.49) and (6.2.52) that


HˆSˆj−SˆjHˆ=−ih ̄^2 cγ^5

[


∂k(σkσj−σjσk)

]


=−ih ̄^2 cγ^5 ( 2 iεk jlσl)∂k= 2 h ̄^2 cεk jlαl∂k,

whereγ^5 is defined by


γ^5 =iγ^0 γ^1 γ^2 γ^3 =

(


0 I


I 0


)


.


Hence we have

(6.2.55)


HˆSˆ 1 −Sˆ 1 Hˆ=− 2 ̄h^2 c(α^3 ∂ 2 −α^2 ∂ 3 ),

HˆSˆ 2 −Sˆ 2 Hˆ=− (^2) ̄h^2 c(α^1 ∂ 3 −α^3 ∂ 1 ),
HˆSˆ 3 −Sˆ 3 Hˆ=− 2 ̄h^2 c(α^2 ∂ 1 −α^1 ∂ 2 ).
ForJˆ=Lˆ+sSˆ, we derive from (6.2.53)-(6.2.55) that
HˆJˆ−JˆHˆ= 0 ⇐⇒ spins=^1
2


(6.2.56).


When fermions move on a straight line,

Hˆ=cα^3 p 3 , Lˆ= 0.

In this case, by (6.2.53)-(6.2.54), for straight line motion,


(6.2.57) HˆJˆ−JˆHˆ= 0 for anys.


Thus, by the conservation law (6.2.48), the assertion of Angular Momentum Rule for fermions
follows from (6.2.56) and (6.2.57).



  1. Bosons. Now, consider bosons which bey the Klein-Gordon equation inthe form
    (6.2.43). It is known that the spinsJof bosons depend on the types of Klein-Gordon fields
    (Ψ,Φ):


(6.2.58)


(


Ψ


Φ


)


=























a scalar field ⇒ J= 0 ,
a 4-vector field ⇒ J= 1 ,
a 2nd-order tensor field ⇒ J= 2 ,
a real valued field ⇒ neutral bosons,
a complex valued field ⇒ charged bosons.
Free download pdf