Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

6.4. ENERGY LEVELS OF SUBATOMIC PARTICLES 363


where~σ= (σ^1 ,σ^2 ,σ^3 )is the Pauli matrix operator,~Dis as in (6.4.13).
We now derive spectral equations for massive bound states from (6.4.14). Let the solu-
tions of (6.4.14) be in the form


Ψk=e−i(λ+mkc

(^2) )t/ ̄h
ψk.
Then equations (6.4.14) become
(λ−gA 0 )


(


ψk 1
ψk 2

)


=−ic ̄h(~σ·~D)

(


ψk 3
ψk 4

)


(6.4.15) ,


(λ−gA 0 + 2 mkc^2 )

(


ψ 3 k
ψ 4 k

)


=−ich ̄(~σ·~D)

(


ψ 1 k
ψ 2 k

)


(6.4.16) ,


for 1≤k≤N. The equation (6.4.16) can be rewritten as


(6.4.17)


(


ψ 3 k
ψ 4 k

)


=


−i ̄h
2 mkc

(


1 +


λ−gA 0
2 mc^2

)− 1


(~σ·~D)

(


ψ 1 k
ψ 2 k

)


.


In physics,λis the energy, andλ−gA 0 is the kinetic energy


λ−gA 0 =

1


2


mkν^2.

For massive particles,ν^2 /c^2 ≃0. Hence, (6.4.17) can be approximatively expressed as


(
ψ 3 k
ψ 4 k

)


=


−i ̄h
2 mkc
(~σ·~D)

(


ψ 1 k
ψ 2 k

)


.


Inserting this equation into (6.4.15), we deduce that


(6.4.18) (λ−gA 0 )


(


ψ 1 k
ψ 2 k

)


=−


̄h^2
2 mk

(~σ·~D)^2

(


ψ 1 k
ψ 2 k

)


.


Now, we need to give the expression of(~σ·~D)^2. To this end, note that the Pauli matrices
satisfy


(σk)^2 = 1 , σkσj=−σjσk=iεljkσl.

Hereεljkis the arrange symbal:


εijk=




1 as(jkl) the even arrange,
−1 as(jkl) the odd arrange,
0 otherwise.

Hence we obtain


(6.4.19) (~σ·~D)^2 = (


3

k= 1

σkDk)^2 =D^2 +i~σ·(~D×~D).
Free download pdf