7.1. ASTROPHYSICAL FLUID DYNAMICS 405
2) By (7.1.6) and (7.1.45),(u·∇)ukcan be written as
ukDkuθ=ur
∂uθ
∂r
+uθ
∂uθ
∂ θ
+uφ
∂uθ
∂ φ
+
2
r
(7.1.50) uθur−sinθcosθu^2 φ
ukDkuφ=ur
∂uφ
∂r
+uθ
∂uφ
∂ θ
+uφ
∂uφ
∂ φ
+
2cosθ
sinθ
uθuφ+
2
r
(7.1.51) uφur,
ukDkur=ur
∂ur
∂r
+uθ
∂ur
∂ θ
+uφ
∂ur
∂ φ
−
r
α
(u^2 θ+sin^2 θu^2 φ−
α′
2 r
(7.1.52) u^2 r).
3) The gradient operator:
(7.1.53) ∇p=
(
1
α
∂p
∂r
,
1
r^2
∂p
∂ θ
,
1
r^2 sin^2 θ
∂p
∂ φ
)
.
4) By (7.1.8) and
√
g=r^2 sinθ
√
α, the divergent operator divuis
(7.1.54) divu=
1
sinθ
∂
∂ θ
(sinθuθ)+
∂uφ
∂ φ
+
1
r^2
√
α
∂
∂r
(r^2
√
αur).
Remark 7.4.The expressions (7.1.47)-(7.1.54) are the differential operators appearing in the
fluid dynamic equations describing the stellar fluids. However, we need to note that the two
componentsuθanduφare the angular velocities ofθandφ, i.e.
uθ=
dθ
dt
, uφ=
dφ
dt
.
In classical fluid dynamics, the velocity fieldv= (vθ,vφ,vr)is the line velocity. The relation
ofuandvis given by
(7.1.55) uθ=
1
r
vθ, uφ=
1
rsinθ
vφ, ur=vr.
Hence, inserting (7.1.55) into (7.1.1) with the expressions (7.1.47)-(7.1.54), we derive the
Navier-Stokes equations in the usual spherical coordinateform as follows
(7.1.56)
∂vθ
∂t
+ (u·∇)vθ=ν∆vθ−
1
ρr
∂p
∂ θ
+fθ,
∂vφ
∂t
+ (u·∇)vφ=ν∆vφ−
1
ρrsinθ
∂p
∂ φ
+fφ,
∂vr
∂t
+ (u·∇)vr=ν∆vr−
1
ρ α
∂p
∂r
+fr,
divv= 0 ,
where
(7.1.57)
∆vθ= ̃∆vθ+
2
r^2
∂vr
∂ θ
−
2cosθ
r^2 sin^2 θ
∂vφ
∂ φ
−
vθ
r^2 sin^2 θ
−
1
2 α^2 r
dα
dr
∂
∂r
(rvθ),
∆vφ= ̃∆vφ+
2
r^2 sinθ
∂vr
∂ φ
+
2cosθ
r^2 sin^2 θ
∂vθ
∂ φ
−
vφ
r^2 sin^2 θ
−
1
2 α^2 r
dα
dr
∂
∂r
(rvφ),
∆vr= ̃∆vr−
2
αr^2
(
vr+
∂vθ
∂ θ
+
cosθ
sinθ
vθ+
1
sinθ
∂vφ
∂ φ
)
+
1
2 α
∂
∂r
(
1
α
dα
dr
vr