Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

7.1. ASTROPHYSICAL FLUID DYNAMICS 405


2) By (7.1.6) and (7.1.45),(u·∇)ukcan be written as

ukDkuθ=ur

∂uθ
∂r

+uθ

∂uθ
∂ θ

+uφ

∂uθ
∂ φ

+


2


r

(7.1.50) uθur−sinθcosθu^2 φ


ukDkuφ=ur

∂uφ
∂r

+uθ

∂uφ
∂ θ

+uφ

∂uφ
∂ φ

+


2cosθ
sinθ

uθuφ+

2


r

(7.1.51) uφur,


ukDkur=ur

∂ur
∂r

+uθ

∂ur
∂ θ

+uφ

∂ur
∂ φ


r
α

(u^2 θ+sin^2 θu^2 φ−

α′
2 r

(7.1.52) u^2 r).


3) The gradient operator:

(7.1.53) ∇p=


(


1


α

∂p
∂r

,


1


r^2

∂p
∂ θ

,


1


r^2 sin^2 θ

∂p
∂ φ

)


.


4) By (7.1.8) and


g=r^2 sinθ


α, the divergent operator divuis

(7.1.54) divu=


1


sinθ


∂ θ

(sinθuθ)+

∂uφ
∂ φ

+


1


r^2


α


∂r

(r^2


αur).

Remark 7.4.The expressions (7.1.47)-(7.1.54) are the differential operators appearing in the
fluid dynamic equations describing the stellar fluids. However, we need to note that the two
componentsuθanduφare the angular velocities ofθandφ, i.e.


uθ=


dt

, uφ=


dt

.


In classical fluid dynamics, the velocity fieldv= (vθ,vφ,vr)is the line velocity. The relation
ofuandvis given by


(7.1.55) uθ=


1


r

vθ, uφ=

1


rsinθ

vφ, ur=vr.

Hence, inserting (7.1.55) into (7.1.1) with the expressions (7.1.47)-(7.1.54), we derive the
Navier-Stokes equations in the usual spherical coordinateform as follows


(7.1.56)


∂vθ
∂t

+ (u·∇)vθ=ν∆vθ−

1


ρr

∂p
∂ θ

+fθ,

∂vφ
∂t
+ (u·∇)vφ=ν∆vφ−

1


ρrsinθ

∂p
∂ φ
+fφ,

∂vr
∂t

+ (u·∇)vr=ν∆vr−

1


ρ α

∂p
∂r

+fr,

divv= 0 ,

where


(7.1.57)


∆vθ= ̃∆vθ+

2


r^2

∂vr
∂ θ


2cosθ
r^2 sin^2 θ

∂vφ
∂ φ



r^2 sin^2 θ


1


2 α^2 r


dr


∂r

(rvθ),

∆vφ= ̃∆vφ+

2


r^2 sinθ

∂vr
∂ φ

+


2cosθ
r^2 sin^2 θ

∂vθ
∂ φ



r^2 sin^2 θ


1


2 α^2 r


dr


∂r

(rvφ),

∆vr= ̃∆vr−

2


αr^2

(


vr+
∂vθ
∂ θ

+


cosθ
sinθ

vθ+

1


sinθ

∂vφ
∂ φ

)


+


1


2 α


∂r

(


1


α


dr

vr

)


,

Free download pdf