Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

474 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY


and byTμ ν=diag(c^2 ρ,g 11 p,g 22 p,g 33 p), we have


T 00 −


1


2


g 00 T=

c^2
2

(


ρ+

3 p
c^2

)


,


Tkk−

1


2


gkkT=

c^2
2
gkk

(


ρ−

p
c^2

)


for 1≤k≤ 3 ,

φ 00 −

1


2


g 00 Φ=

1


2 c^2

(


φtt−

3 Rt
R

φt

)


,


φkk−

1


2


gkkΦ=

1


2 c^2

gkk

(


φtt+

Rt
R

φt

)


for 1≤k≤ 3.

Thus, we derive from (7.6.4) two independent field equations as


R′′=−


4 πG
3

(


ρ+

3 p
c^2

)


R−


1


6


φ′′R+

1


2


(7.6.5) R′φ′,


R′′
R

+ 2


(


R′


R


) 2


+


2 c^2
R^2
= 4 πG

(


ρ−

p
c^2

)


+


1


2


φ′′+

1


2


R′


R


(7.6.6) φ′.


We infer from (7.6.5) and (7.6.6) that


(7.6.7) (R′)^2 =


8 πG
3

R^2 ρ+

1


3


R^2 φ′′−c^2.

By the Bianchi identity:

∇μ(∇μ νφ+
8 πG
c^4

Tμ ν) = 0 ,

we deduce that


(7.6.8) φ′′′+


3 R′


R


φ′′=− 8 πG

(


ρ′+

3 R′


R


ρ+

3 R′


R


p
c^2

)


.


It is known that the energy densityρand the cosmic radiusR(also called the scale factor)
satisfy the relation:


(7.6.9) ρ=


ρ 0
R^3

, ρ 0 the density atR= 1.

Hence, it follows from (7.6.9) that


ρ′=− 3 ρR′/R.

Thus, (7.6.8) is rewritten as


(7.6.10) φ′′′+


3 R′


R


φ′′=−

24 πG
c^2

R′


R


p.

In addition, making the transformation

(7.6.11) φ′′=


ψ
R^3

,

Free download pdf