474 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY
and byTμ ν=diag(c^2 ρ,g 11 p,g 22 p,g 33 p), we have
T 00 −
1
2
g 00 T=
c^2
2
(
ρ+
3 p
c^2
)
,
Tkk−
1
2
gkkT=
c^2
2
gkk
(
ρ−
p
c^2
)
for 1≤k≤ 3 ,
φ 00 −
1
2
g 00 Φ=
1
2 c^2
(
φtt−
3 Rt
R
φt
)
,
φkk−
1
2
gkkΦ=
1
2 c^2
gkk
(
φtt+
Rt
R
φt
)
for 1≤k≤ 3.
Thus, we derive from (7.6.4) two independent field equations as
R′′=−
4 πG
3
(
ρ+
3 p
c^2
)
R−
1
6
φ′′R+
1
2
(7.6.5) R′φ′,
R′′
R
+ 2
(
R′
R
) 2
+
2 c^2
R^2
= 4 πG
(
ρ−
p
c^2
)
+
1
2
φ′′+
1
2
R′
R
(7.6.6) φ′.
We infer from (7.6.5) and (7.6.6) that
(7.6.7) (R′)^2 =
8 πG
3
R^2 ρ+
1
3
R^2 φ′′−c^2.
By the Bianchi identity:
∇μ(∇μ νφ+
8 πG
c^4
Tμ ν) = 0 ,
we deduce that
(7.6.8) φ′′′+
3 R′
R
φ′′=− 8 πG
(
ρ′+
3 R′
R
ρ+
3 R′
R
p
c^2
)
.
It is known that the energy densityρand the cosmic radiusR(also called the scale factor)
satisfy the relation:
(7.6.9) ρ=
ρ 0
R^3
, ρ 0 the density atR= 1.
Hence, it follows from (7.6.9) that
ρ′=− 3 ρR′/R.
Thus, (7.6.8) is rewritten as
(7.6.10) φ′′′+
3 R′
R
φ′′=−
24 πG
c^2
R′
R
p.
In addition, making the transformation
(7.6.11) φ′′=
ψ
R^3