66 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF PHYSICS
To solve this problem, as shown in (2.1.31), we need to add a termΓto the derivative
operator∂k, resulting a new derivative operator∇:
∇jAk=∂Ak
∂xj+ΓkijAi,such that∇={∇j}is a tensor operator. Namely,{∇jAk}is a (1,1) type tensor, and transforms
as
(2.3.21) ∇ ̃jA ̃k=
∂A ̃k
∂ ̃xj+ ̃ΓkijA ̃i=aklbij(
∂Al
∂xi+ΓlriAr)
=aklbij∇iAl.By (2.3.20), it follows from (2.3.21) that
(2.3.22) ̃ΓkijA ̃i=aklbijΓlriAr−bij
∂akl
∂xiAl.By (2.3.22) we deduce the transformation rule forΓas
(2.3.23) ̃Γkij=aklbribsjΓlrs−bribsj
∂akr
∂xs.
Fortunately, for a Riemannian space{M,gij}, there exists a set of functions(2.3.24) Γ={Γkij},
called the Levi-Civita connection, which satisfies the transformation given by (2.3.23), and
are given by
(2.3.25) Γkij=
1
2
gkl(
∂gil
∂xj+
∂gjl
∂xi−
∂gij
∂xl)
,
which we have seen in (2.3.7).
Based on the connection (2.3.24)-(2.3.25), we now define the covariant derivatives in the
Riemannian space{M,gij}as follows:
∇ku=∂u
∂xkfor a scalar fieldu,∇kuj=
∂uj
∂xk+Γkljul for a vector field{uj},∇kuj=∂uj
∂xk−Γlk jul for a covector field{uj},and for a(r,s)type general tensor field{uij^11 ······irjs},
∇kuij^11 ······irjs=∂uij^11 ······irjs
∂xk(2.3.26) −Γlk j 1 uil j^12 ······irjs− ··· −Γlk jsuij^11 ······irjs− 1 l
+Γikl^1 ulij 12 ······jisr+···+Γiklruij^11 ······ijss−^1 l.