Contents
Introduction................. iv
Bibliography................ vi1 Basic Stuff................. 1
Trigonometry
Parametric Differentiation
Gaussian Integrals
erf and Gamma
Differentiating
Integrals
Polar Coordinates
Sketching Graphs
2 Infinite Series................ 30
The Basics
Deriving Taylor Series
Convergence
Series of Series
Power series, two variables
Stirling’s Approximation
Useful Tricks
Diffraction
Checking Results
3 Complex Algebra.............. 65
Complex Numbers
Some Functions
Applications of Euler’s Formula
Logarithms
Mapping
4 Differential Equations............ 83
Linear Constant-Coefficient
Forced Oscillations
Series Solutions
Trigonometry via ODE’s
Green’s Functions
Separation of Variables
Simultaneous Equations
Simultaneous ODE’s
Legendre’s Equation5 Fourier Series............... 118
Examples
Computing Fourier Series
Choice of Basis
Periodically Forced ODE’s
Return to Parseval
Gibbs Phenomenon6 Vector Spaces............... 142
The Underlying Idea
Axioms
Examples of Vector Spaces
Linear Independence
Norms
Scalar Product
Bases and Scalar Products
Gram-Schmidt Orthogonalization
Cauchy-Schwartz inequality
Infinite Dimensionsi