10—Partial Differential Equations 303Now evaluate the integral on the left side. First,m 6 = 0:
〈
emπix/L,V(x,0)〉
=
∫L
−Ldxe−mπix/L{
0 (−L < x < 0 )
V 0 ( 0 < x < L)=V 0∫L
0dxe−mπix/L=V 0L
−mπie−mπix/L∣
∣
∣
L
0=V 0L
−mπi[
(−1)m− 1]
Then evaluate it separately form= 0, and you have
〈
1 ,V(x,0)〉
=V 0 L.
Now assemble the result. Before plunging in, look at what will happen.
Them= 0term sits by itself.
For the other terms, only oddmhave non-zero values.
V(x,z) =1
2
V 0 +V 0
∑∞
m=11
− 2 mπi[
(−1)m− 1]
emπix/Le−mπz/L+V 0
∑−^1
m=−∞1
− 2 mπi[
(−1)m− 1]
emπix/Le+mπz/L(39)
To put this into a real form that is easier to interpret, change variables, lettingm=−nin the second sum and
m=nin the first, finally changing the sum so that it is over only the odd terms.
V(x,z) =1
2
V 0 +V 0
∑∞
n=11
− 2 nπi[
(−1)n− 1]
enπix/Le−nπz/L+V 0
∑∞
11
+2nπi[
(−1)n− 1]
e−nπix/Le−nπz/L=
1
2
V 0 +V 0
∑∞
n=1[
(−1)n− 1] 1
−nπsin(nπx/L)e−nπz/L=
1
2
V 0 +
2
πV 0
∑∞
`=01
2 `+ 1
sin(
(2`+ 1)πx/L)
e−(2`+1)πz/L