14—Complex Variables 422Just asξkis a point in thekthinterval, so isζka point in thekthinterval along the curveC.
How do you evaluate these integrals? Pretty much the same way that you evaluate line integrals in vector
calculus. You can write this as
∫
Cf(z)dz=∫ (
u(x,y) +iv(x,y))(
dx+idy)
=
∫ [
(udx−v dy) +i(udy+v dx)]
If you have a parametric representation for the values ofx(t)andy(t)along the curve this is
∫t 2t 1[
(ux ̇−vy ̇) +i(uy ̇+vx ̇)]
dtFor example take the functionf(z) =z and integrate it around a circle centered at the origin. x=Rcosθ,
y=Rsinθ. ∫
z dz=∫
[
(xdx−y dy) +i(xdy+y dx)]
=
∫ 2 π0dθR^2[
(−cosθsinθ−sinθcosθ) +i(cos^2 θ−sin^2 θ)]
= 0
Wouldn’t it be easier to do this in polar coordinates?z=reiθ.
∫
z dz=∫
reiθ[
eiθdr+ireiθdθ]
=
∫ 2 π0ReiθiReiθdθ=iR^2∫ 2 π0e^2 iθdθ= 0 (3)Do the same thing for the function 1 /z. Use polar coordinates.
∮
1
zdz=∫ 2 π01
ReiθiReiθdθ=∫ 2 π0idθ= 2πi (4)This is an important result! Do the same thing forznwherenis any positive or negative integer, problem 1.
Rather than spending time on more examples of integrals, I’ll jump to a different subject. The main results
about integrals will follow after that (the residue theorem).