Mathematical Tools for Physics

(coco) #1
14—Complex Variables 444

By assumption,fis bounded,|f(z)|≤M. A basic property of complex numbers is that|u+v|≤|u|+|v|for
any complex numbersuandv. This means that in the defining sum for an integral,








k

f(ζk)∆zk








k


∣f(ζk)




∣∆zk


∣, so






f(z)dz




∣≤



|f(z)||dz| (16)

Apply this.


|f(z 1 )−f(z 2 )|≤


|dz||f(z′)|





z 1 −z 2
(z′−z 1 )(z′−z 2 )




∣≤M|z^1 −z^2 |


|dz|





1


(z′−z 1 )(z′−z 2 )





On a big enough circle of radiusR, this becomes


|f(z 1 )−f(z 2 )|≤M|z 1 −z 2 | 2 πR

1


R^2


−→ 0 asR→∞

The left side doesn’t depend onR, sof(z 1 ) =f(z 2 ).

Free download pdf