14—Complex Variables 444
By assumption,fis bounded,|f(z)|≤M. A basic property of complex numbers is that|u+v|≤|u|+|v|for
any complex numbersuandv. This means that in the defining sum for an integral,
∣
∣
∣
∣
∣
∑
k
f(ζk)∆zk
∣
∣
∣
∣
∣
≤
∑
k
∣
∣f(ζk)
∣
∣
∣
∣∆zk
∣
∣, so
∣
∣
∣
∣
∫
f(z)dz
∣
∣
∣
∣≤
∫
|f(z)||dz| (16)
Apply this.
|f(z 1 )−f(z 2 )|≤
∫
|dz||f(z′)|
∣
∣
∣
∣
z 1 −z 2
(z′−z 1 )(z′−z 2 )
∣
∣
∣
∣≤M|z^1 −z^2 |
∫
|dz|
∣
∣
∣
∣
1
(z′−z 1 )(z′−z 2 )
∣
∣
∣
∣
On a big enough circle of radiusR, this becomes
|f(z 1 )−f(z 2 )|≤M|z 1 −z 2 | 2 πR
1
R^2
−→ 0 asR→∞
The left side doesn’t depend onR, sof(z 1 ) =f(z 2 ).