14—Complex Variables 44914.32 Evaluate ∫∞
0dxlnx
a^2 +x^2(What happens if you consider(lnx)^2 ?) Ans:(πlna)/ 2 a
14.33 Evaluate(λ >1)by contour integration
∫ 2 π0dθ
(
λ+ sinθ) 2
Ans: 2 πλ/(λ^2 −1)^3 /^214.34 Evaluate ∫π
0dθsin^2 nθRecall Eq. (2.14). Ans:π 2 nCn
/
22 n−^1 =π(2n−1)!!/(2n)!!14.35 Evaluate the integral of problem 33 another way. Assumeλis large and expand the integrand in a power
series in 1 /λ. Use the result of the preceding problem to evaluate the individual terms and then sum the resulting
series. Ans: Still 2 πλ/(λ^2 −1)^3 /^2
14.36 Evaluate
∫∞
0dxcosx^2 and∫∞
0dxsinx^2 by considering∫∞
0dxeix2Push the contour of integration toward the 45 ◦line. Ans:^12
√
π/ 214.37
f(z) =1
z(z−1)(z−2)−
1
z^2 (z−1)^2 (z−2)^2What is
∫
Cdz f(z)about the circlex(^2) +y (^2) = 9?