14—Complex Variables 449
14.32 Evaluate ∫∞
0
dx
lnx
a^2 +x^2
(What happens if you consider(lnx)^2 ?) Ans:(πlna)/ 2 a
14.33 Evaluate(λ >1)by contour integration
∫ 2 π
0
dθ
(
λ+ sinθ
) 2
Ans: 2 πλ/(λ^2 −1)^3 /^2
14.34 Evaluate ∫π
0
dθsin^2 nθ
Recall Eq. (2.14). Ans:π 2 nCn
/
22 n−^1 =π(2n−1)!!/(2n)!!
14.35 Evaluate the integral of problem 33 another way. Assumeλis large and expand the integrand in a power
series in 1 /λ. Use the result of the preceding problem to evaluate the individual terms and then sum the resulting
series. Ans: Still 2 πλ/(λ^2 −1)^3 /^2
14.36 Evaluate
∫∞
0
dxcosx^2 and
∫∞
0
dxsinx^2 by considering
∫∞
0
dxeix
2
Push the contour of integration toward the 45 ◦line. Ans:^12
√
π/ 2
14.37
f(z) =
1
z(z−1)(z−2)
−
1
z^2 (z−1)^2 (z−2)^2
What is
∫
Cdz f(z)about the circlex
(^2) +y (^2) = 9?