Mathematical Tools for Physics

(coco) #1
15—Fourier Analysis 461

∫∞


−∞


2 π

e−iω(t−t

′)

−mω^2 −ibω+k

=− 2 πi


ω±

Res

C 3

C 4

(15)


The denominator in Eq. ( 14 ) is−m(ω−ω+)(ω−ω−). Use this form to compute the residues. Leave the 1 / 2 π
aside for the moment and you have


e−iω(t−t

′)

−mω^2 −ibω+k

=


e−iω(t−t

′)

−m(ω−ω+)(ω−ω−)

The residues of this atω±are the coefficients of these first order poles.


atω+:

e−iω+(t−t

′)

−m(ω+−ω−)

and atω−:

e−iω−(t−t

′)

−m(ω−−ω+)

The explicit values ofω±are


ω+=

−ib+


−b^2 + 4km
2 m

and ω−=

−ib−


−b^2 + 4km
2 m

Let ω′=


−b^2 + 4km
2 m

and γ=

b
2 m

The difference that appears in the preceding equation is then


ω+−ω−= (ω′−iγ)−(−ω′−iγ) = 2ω′
Free download pdf