- I. Lazaridiset al., Ancient human genomes suggest
three ancestral populations for present-day Europeans.
Nature 513 , 409–413 (2014). doi:10.1038/nature13673;
pmid: 25230663 - 1000 Genomes Project Consortium, A global reference for
human genetic variation.Nature 526 , 68–74 (2015).
doi:10.1038/nature15393; pmid: 26432245 - S. Mallicket al., The Simons Genome Diversity Project:
300 genomes from 142 diverse populations.Nature 538 ,
201 – 206 (2016). doi:10.1038/nature18964; pmid: 27654912 - A. Bergströmet al., Insights into human genetic variation
and population history from 929 diverse genomes.Science
367 , eaay5012 (2020). doi:10.1126/science.aay5012;
pmid: 32193295 - S. Belsareet al., Evaluating the quality of the 1000 genomes
project data.BMC Genomics 20 , 620 (2019). doi:10.1186/
s12864-019-5957-x; pmid: 31416423 - L. Shiet al., Long-read sequencing and de novo assembly of
a Chinese genome.Nat. Commun. 7 , 12065 (2016).
doi:10.1038/ncomms12065; pmid: 27356984 - A. M. Wengeret al., Accurate circular consensus long-read
sequencing improves variant detection and assembly of a
human genome.Nat. Biotechnol. 37 , 1155–1162 (2019).
doi:10.1038/s41587-019-0217-9; pmid: 31406327 - S. Hwang, E. Kim, I. Lee, E. M. Marcotte, Systematic
comparison of variant calling pipelines using gold standard
personal exome variants.Sci. Rep. 5 , 17875 (2015).
doi:10.1038/srep17875; pmid: 26639839 - J. Kelleheret al., Inferring whole-genome histories in large
population datasets.Nat. Genet. 51 , 1330–1338 (2019).
doi:10.1038/s41588-019-0483-y; pmid: 31477934 - L. L. Cavalli-Sforza, M. W. Feldman, The application
of molecular genetic approaches to the study of human
evolution.Nat. Genet. 33 , 266–275 (2003). doi:10.1038/
ng1113; pmid: 12610536 - N. Patterson, A. L. Price, D. Reich, Population structure and
eigenanalysis.PLOS Genet. 2 , e190 (2006). doi:10.1371/
journal.pgen.0020190; pmid: 17194218 - J. K. Pritchard, M. Stephens, P. Donnelly, Inference of
population structure using multilocus genotype data.
Genetics 155 , 945–959 (2000). doi:10.1093/genetics/
155.2.945; pmid: 10835412 - D. J. Lawson, G. Hellenthal, S. Myers, D. Falush, Inference of
population structure using dense haplotype data.PLOS
Genet. 8 , e1002453 (2012). doi:10.1371/
journal.pgen.1002453; pmid: 22291602 - N. Pattersonet al., Ancient admixture in human history.
Genetics 192 , 1065–1093 (2012). doi:10.1534/
genetics.112.145037; pmid: 22960212 - J. K. Pickrell, J. K. Pritchard, Inference of population splits
and mixtures from genome-wide allele frequency data.
PLOS Genet. 8 , e1002967 (2012). doi:10.1371/
journal.pgen.1002967; pmid: 23166502 - L. Bonomi, Y. Huang, L. Ohno-Machado, Privacy challenges
and research opportunities for genomic data sharing.
Nat. Genet. 52 , 646–654 (2020). doi:10.1038/
s41588-020-0651-0; pmid: 32601475 - J. Kelleher, A. M. Etheridge, G. McVean, Efficient Coalescent
Simulation and Genealogical Analysis for Large Sample Sizes.
PLOS Comput. Biol. 12 , e1004842 (2016). doi:10.1371/
journal.pcbi.1004842; pmid: 27145223 - R. R. Hudson, Properties of a neutral allele model with
intragenic recombination.Theor. Popul. Biol. 23 , 183– 201
(1983). doi:10.1016/0040-5809(83)90013-8; pmid: 6612631 - P. Ralph, K. Thornton, J. Kelleher, Efficiently Summarizing
Relationships in Large Samples: A General Duality Between
Statistics of Genealogies and Genomes.Genetics 215 ,
779 – 797 (2020). doi:10.1534/genetics.120.303253;
pmid: 32357960 - Materials and methods are available as supplementary
materials online. - K. Prüferet al., The complete genome sequence of a
Neanderthal from the Altai Mountains.Nature 505 , 43– 49
(2014). doi:10.1038/nature12886; pmid: 24352235 - K. Prüferet al., A high-coverage Neandertal genome from
Vindija Cave in Croatia.Science 358 , 655–658 (2017).
doi:10.1126/science.aao1887; pmid: 28982794 - F. Mafessoniet al., A high-coverage Neandertal genome from
Chagyrskaya Cave.Proc. Natl. Acad. Sci. U.S.A. 117 , 15132– 15136
(2020). doi:10.1073/pnas.2004944117; pmid: 32546518 - M. Meyeret al., A high-coverage genome sequence from an
archaic Denisovan individual.Science 338 , 222–226 (2012).
doi:10.1126/science.1224344; pmid: 22936568
29. Q. Fuet al., Genome sequence of a 45,000-year-old modern
human from western Siberia.Nature 514 , 445–449 (2014).
doi:10.1038/nature13810; pmid: 25341783
30. J. Kelleher, Y. Wong, B. Jeffery, A. W. Wohns, I. Rebollo,
D. Rodriguez Fernandez, tskit-dev/tsinfer: 0.2.1, version 0.2.1,
Zenodo (2021);https://doi.org/10.5281/zenodo.5168051.
31. A. W. Wohns, Y. Wong, B. Jeffery, tskit-dev/tsdate: Minor
feature and bugfix release, version 0.1.4, Zenodo (2021);
https://doi.org/10.5281/zenodo.5168040.
32. B. Bonne, The Samaritans: A demographic study.Hum. Biol.
35 , 61–89 (1963). pmid: 13968819
33. P. K. Albers, G. McVean, Dating genomic variants and shared
ancestry in population-scale sequencing data.PLOS Biol. 18 ,
e3000586 (2020). doi:10.1371/journal.pbio.3000586
pmid: 31951611
34. L. Speidel, M. Forest, S. Shi, S. R. Myers, A method for
genome-wide genealogy estimation for thousands of
samples.Nat. Genet. 51 , 1321–1329 (2019). doi:10.1038/
s41588-019-0484-x; pmid: 31477933
35. D. Reichet al., Genetic history of an archaic hominin group
from Denisova Cave in Siberia.Nature 468 , 1053– 1060
(2010). doi:10.1038/nature09710; pmid: 21179161
36. D. Reichet al., Denisova admixture and the first modern
human dispersals into Southeast Asia and Oceania.Am. J.
Hum. Genet. 89 , 516–528 (2011). doi:10.1016/
j.ajhg.2011.09.005; pmid: 21944045
37. G. S. Jacobset al., Multiple Deeply Divergent Denisovan
Ancestries in Papuans.Cell 177 , 1010–1021.e32 (2019).
doi:10.1016/j.cell.2019.02.035; pmid: 30981557
38. V. M. Narasimhanet al., The formation of human populations
in South and Central Asia.Science 365 , eaat7487 (2019).
doi:10.1126/science.aat7487; pmid: 31488661
39. L. Chen, A. B. Wolf, W. Fu, L. Li, J. M. Akey, Identifying and
Interpreting Apparent Neanderthal Ancestry in African
Individuals.Cell 180 , 677–687.e16 (2020). doi:10.1016/
j.cell.2020.01.012; pmid: 32004458
40. J. D. Wallet al., Higher levels of neanderthal ancestry in East
Asians than in Europeans.Genetics 194 , 199–209 (2013).
doi:10.1534/genetics.112.148213; pmid: 23410836
41. I. McDougall, F. H. Brown, J. G. Fleagle, Stratigraphic
placement and age of modern humans from Kibish, Ethiopia.
Nature 433 , 733–736 (2005). doi:10.1038/nature03258;
pmid: 15716951
42. J.-J. Hublinet al., New fossils from Jebel Irhoud, Morocco
and the pan-African origin ofHomo sapiens.Nature 546 ,
289 – 292 (2017). doi:10.1038/nature22336;
pmid: 28593953
43. K. Wanget al., Ancient genomes reveal complex patterns of
population movement, interaction, and replacement in
sub-Saharan Africa.Sci. Adv. 6 , eaaz0183 (2020).
doi:10.1126/sciadv.aaz0183; pmid: 32582847
44. M. E. Prendergastet al., Ancient DNA reveals a multistep
spread of the first herders into sub-Saharan Africa.Science
365 , eaaw6275 (2019). doi:10.1126/science.aaw6275;
pmid: 31147405
45. A. Kalkauskaset al., Sampling bias and model choice in
continuous phylogeography: Getting lost on a random walk.
PLOS Comput. Biol. 17 , e1008561 (2021). doi:10.1371/
journal.pcbi.1008561
46. L. Vigilant, M. Stoneking, H. Harpending, K. Hawkes,
A. C. Wilson, African populations and the evolution of human
mitochondrial DNA.Science 253 , 1503–1507 (1991).
doi:10.1126/science.1840702; pmid: 1840702
47. P. A. Underhillet al., The phylogeography of Y chromosome
binary haplotypes and the origins of modern human
populations.Ann. Hum. Genet. 65 , 43–62 (2001).
doi:10.1046/j.1469-1809.2001.6510043.x; pmid: 11415522
48. J. F. O’Connell, J. Allen, The process, biotic impact, and
global implications of the human colonization of Sahul about
47,000 years ago.J. Archaeol. Sci. 56 , 73–84 (2015).
doi:10.1016/j.jas.2015.02.020
49. B. Llamaset al., Ancient mitochondrial DNA provides
high-resolution time scale of the peopling of the Americas.
Sci. Adv. 2 , e1501385 (2016). doi:10.1126/sciadv.1501385;
pmid: 27051878
50. J. V. Moreno-Mayaret al., Early human dispersals within the
Americas.Science 362 , eaav2621 (2018). doi:10.1126/
science.aav2621; pmid: 30409807
51. R. A. Fisher,The Genetical Theory of Natural Selection
(Clarendon, 1930).
52. S. Wright, Evolution in Mendelian populations.Genetics 16 ,
97 – 159 (1931). doi:10.1093/genetics/16.2.97;
pmid: 17246615
53. J. F. C. Kingman, The coalescent.Stochastic Process. Appl.
13 , 235–248 (1982). doi:10.1016/0304-4149(82)90011-4
54. G. A. T. McVean, N. J. Cardin, Approximating the coalescent
with recombination.Phil. Trans. R. Soc. B 360 , 1387– 1393
(2005). doi:10.1098/rstb.2005.1673; pmid: 16048782
55. M. D. Rasmussen, M. J. Hubisz, I. Gronau, A. Siepel,
Genome-wide inference of ancestral recombination graphs.
PLOS Genet. 10 , e1004342 (2014). doi:10.1371/
journal.pgen.1004342; pmid: 24831947
56. K. Harris, From a database of genomes to a forest of
evolutionary trees.Nat. Genet. 51 , 1306–1307 (2019).
doi:10.1038/s41588-019-0492-x; pmid: 31477932
57. C. L. Scheibet al., East Anglian early Neolithic monument
burial linked to contemporary Megaliths.Ann. Hum. Biol. 46 ,
145 – 149 (2019). doi:10.1080/03014460.2019.1623912;
pmid: 31184205
58. A. J. Stern, L. Speidel, N. A. Zaitlen, R. Nielsen, Disentangling
selection on genetically correlated polygenic traits via whole-
genome genealogies.Am. J. Hum. Genet. 108 , 219– 239
(2021). doi:10.1016/j.ajhg.2020.12.005; pmid: 33440170
59. L. Speidelet al., Inferring population histories for ancient
genomes using genome-wide genealogies.Mol. Biol. Evol. 38 ,
3497 – 3511 (2021). doi:10.1093/molbev/msab174
60. N. K. Schaefer, B. Shapiro, R. E. Green, An ancestral
recombination graph of human, Neanderthal, and Denisovan
genomes.Sci. Adv. 7 , eabc0776 (2021). doi:10.1126/
sciadv.abc0776; pmid: 34272242
61. R. Nielsenet al., Tracing the peopling of the world through
genomics.Nature 541 , 302–310 (2017). doi:10.1038/
nature21347; pmid: 28102248
62. J. J. Michaelsonet al., Whole-genome sequencing in autism
identifies hot spots for de novo germline mutation.Cell 151 ,
1431 – 1442 (2012). doi:10.1016/j.cell.2012.11.019;
pmid: 23260136
63. A. V. Nesta, D. Tafur, C. R. Beck, Hotspots of Human
Mutation.Trends Genet. 37 , 717–729 (2021). doi:10.1016/
j.tig.2020.10.003; pmid: 33199048
64. R. Hui, E. D’Atanasio, L. M. Cassidy, C. L. Scheib, T. Kivisild,
Evaluating genotype imputation pipeline for ultra-low
coverage ancient genomes.Sci. Rep. 10 , 18542 (2020).
doi:10.1038/s41598-020-75387-w; pmid: 33122697
65. K. P. Murphy, Y. Weiss, M. I. Jordan, inProceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence,
K. B. Laskey, H. Prade, Eds. (Morgan Kaufmann Publishers Inc.,
1999), pp. 467–475.
66. M. E. Allentoftet al., Population genomics of Bronze Age
Eurasia.Nature 522 , 167–172 (2015). doi:10.1038/
nature14507; pmid: 26062507
67. C. E. G. Amorimet al., Understanding 6th-century barbarian
social organization and migration through paleogenomics.
Nat. Commun. 9 , 3547 (2018). doi:10.1038/s41467-018-
06024-4; pmid: 30206220
68. M. L. Antonioet al., Ancient Rome: A genetic crossroads of
Europe and the Mediterranean.Science 366 , 708–714 (2019).
doi:10.1126/science.aay6826; pmid: 31699931
69. S. Braceet al., Ancient genomes indicate population
replacement in Early Neolithic Britain.Nat. Ecol. Evol. 3 ,
765 – 771 (2019). doi:10.1038/s41559-019-0871-9;
pmid: 30988490
70. F. Broushakiet al., Early Neolithic genomes from the eastern
Fertile Crescent.Science 353 , 499–503 (2016). doi:10.1126/
science.aaf7943; pmid: 27417496
71. L. M. Cassidyet al., Neolithic and Bronze Age migration to
Ireland and establishment of the insular Atlantic genome.
Proc. Natl. Acad. Sci. U.S.A. 113 , 368–373 (2016).
doi:10.1073/pnas.1518445113; pmid: 26712024
72. P. B. Damgaardet al., 137 ancient human genomes from
across the Eurasian steppes.Nature 557 , 369–374 (2018).
doi:10.1038/s41586-018-0094-2; pmid: 29743675
73. P. de Barros Damgaardet al., The first horse herders and the
impact of early Bronze Age steppe expansions into Asia.
Science 360 , eaar7711 (2018). doi:10.1126/science.aar7711;
pmid: 29743352
74. S. S. Ebenesersdóttiret al., Ancient genomes from Iceland reveal
the making of a human population.Science 360 , 1028– 1032
(2018). doi:10.1126/science.aar2625; pmid: 29853688
75. M. Feldmanet al., Late Pleistocene human genome suggests
a local origin for the first farmers of central Anatolia.Nat.
Commun. 10 , 1218 (2019). doi:10.1038/s41467-019-09209-7;
pmid: 30890703
76. M. Feldmanet al., Ancient DNA sheds light on the genetic
origins of early Iron Age Philistines.Sci. Adv. 5 , eaax0061
(2019). doi:10.1126/sciadv.aax0061; pmid: 31281897
Wohnset al.,Science 375 , eabi8264 (2022) 25 February 2022 7of9
RESEARCH | RESEARCH ARTICLE