Science - USA (2022-02-25)

(Maropa) #1

  1. I. Lazaridiset al., Ancient human genomes suggest
    three ancestral populations for present-day Europeans.
    Nature 513 , 409–413 (2014). doi:10.1038/nature13673;
    pmid: 25230663

  2. 1000 Genomes Project Consortium, A global reference for
    human genetic variation.Nature 526 , 68–74 (2015).
    doi:10.1038/nature15393; pmid: 26432245

  3. S. Mallicket al., The Simons Genome Diversity Project:
    300 genomes from 142 diverse populations.Nature 538 ,
    201 – 206 (2016). doi:10.1038/nature18964; pmid: 27654912

  4. A. Bergströmet al., Insights into human genetic variation
    and population history from 929 diverse genomes.Science
    367 , eaay5012 (2020). doi:10.1126/science.aay5012;
    pmid: 32193295

  5. S. Belsareet al., Evaluating the quality of the 1000 genomes
    project data.BMC Genomics 20 , 620 (2019). doi:10.1186/
    s12864-019-5957-x; pmid: 31416423

  6. L. Shiet al., Long-read sequencing and de novo assembly of
    a Chinese genome.Nat. Commun. 7 , 12065 (2016).
    doi:10.1038/ncomms12065; pmid: 27356984

  7. A. M. Wengeret al., Accurate circular consensus long-read
    sequencing improves variant detection and assembly of a
    human genome.Nat. Biotechnol. 37 , 1155–1162 (2019).
    doi:10.1038/s41587-019-0217-9; pmid: 31406327

  8. S. Hwang, E. Kim, I. Lee, E. M. Marcotte, Systematic
    comparison of variant calling pipelines using gold standard
    personal exome variants.Sci. Rep. 5 , 17875 (2015).
    doi:10.1038/srep17875; pmid: 26639839

  9. J. Kelleheret al., Inferring whole-genome histories in large
    population datasets.Nat. Genet. 51 , 1330–1338 (2019).
    doi:10.1038/s41588-019-0483-y; pmid: 31477934

  10. L. L. Cavalli-Sforza, M. W. Feldman, The application
    of molecular genetic approaches to the study of human
    evolution.Nat. Genet. 33 , 266–275 (2003). doi:10.1038/
    ng1113; pmid: 12610536

  11. N. Patterson, A. L. Price, D. Reich, Population structure and
    eigenanalysis.PLOS Genet. 2 , e190 (2006). doi:10.1371/
    journal.pgen.0020190; pmid: 17194218

  12. J. K. Pritchard, M. Stephens, P. Donnelly, Inference of
    population structure using multilocus genotype data.
    Genetics 155 , 945–959 (2000). doi:10.1093/genetics/
    155.2.945; pmid: 10835412

  13. D. J. Lawson, G. Hellenthal, S. Myers, D. Falush, Inference of
    population structure using dense haplotype data.PLOS
    Genet. 8 , e1002453 (2012). doi:10.1371/
    journal.pgen.1002453; pmid: 22291602

  14. N. Pattersonet al., Ancient admixture in human history.
    Genetics 192 , 1065–1093 (2012). doi:10.1534/
    genetics.112.145037; pmid: 22960212

  15. J. K. Pickrell, J. K. Pritchard, Inference of population splits
    and mixtures from genome-wide allele frequency data.
    PLOS Genet. 8 , e1002967 (2012). doi:10.1371/
    journal.pgen.1002967; pmid: 23166502

  16. L. Bonomi, Y. Huang, L. Ohno-Machado, Privacy challenges
    and research opportunities for genomic data sharing.
    Nat. Genet. 52 , 646–654 (2020). doi:10.1038/
    s41588-020-0651-0; pmid: 32601475

  17. J. Kelleher, A. M. Etheridge, G. McVean, Efficient Coalescent
    Simulation and Genealogical Analysis for Large Sample Sizes.
    PLOS Comput. Biol. 12 , e1004842 (2016). doi:10.1371/
    journal.pcbi.1004842; pmid: 27145223

  18. R. R. Hudson, Properties of a neutral allele model with
    intragenic recombination.Theor. Popul. Biol. 23 , 183– 201
    (1983). doi:10.1016/0040-5809(83)90013-8; pmid: 6612631

  19. P. Ralph, K. Thornton, J. Kelleher, Efficiently Summarizing
    Relationships in Large Samples: A General Duality Between
    Statistics of Genealogies and Genomes.Genetics 215 ,
    779 – 797 (2020). doi:10.1534/genetics.120.303253;
    pmid: 32357960

  20. Materials and methods are available as supplementary
    materials online.

  21. K. Prüferet al., The complete genome sequence of a
    Neanderthal from the Altai Mountains.Nature 505 , 43– 49
    (2014). doi:10.1038/nature12886; pmid: 24352235

  22. K. Prüferet al., A high-coverage Neandertal genome from
    Vindija Cave in Croatia.Science 358 , 655–658 (2017).
    doi:10.1126/science.aao1887; pmid: 28982794

  23. F. Mafessoniet al., A high-coverage Neandertal genome from
    Chagyrskaya Cave.Proc. Natl. Acad. Sci. U.S.A. 117 , 15132– 15136
    (2020). doi:10.1073/pnas.2004944117; pmid: 32546518

  24. M. Meyeret al., A high-coverage genome sequence from an
    archaic Denisovan individual.Science 338 , 222–226 (2012).
    doi:10.1126/science.1224344; pmid: 22936568
    29. Q. Fuet al., Genome sequence of a 45,000-year-old modern
    human from western Siberia.Nature 514 , 445–449 (2014).
    doi:10.1038/nature13810; pmid: 25341783
    30. J. Kelleher, Y. Wong, B. Jeffery, A. W. Wohns, I. Rebollo,
    D. Rodriguez Fernandez, tskit-dev/tsinfer: 0.2.1, version 0.2.1,
    Zenodo (2021);https://doi.org/10.5281/zenodo.5168051.
    31. A. W. Wohns, Y. Wong, B. Jeffery, tskit-dev/tsdate: Minor
    feature and bugfix release, version 0.1.4, Zenodo (2021);
    https://doi.org/10.5281/zenodo.5168040.
    32. B. Bonne, The Samaritans: A demographic study.Hum. Biol.
    35 , 61–89 (1963). pmid: 13968819
    33. P. K. Albers, G. McVean, Dating genomic variants and shared
    ancestry in population-scale sequencing data.PLOS Biol. 18 ,
    e3000586 (2020). doi:10.1371/journal.pbio.3000586
    pmid: 31951611
    34. L. Speidel, M. Forest, S. Shi, S. R. Myers, A method for
    genome-wide genealogy estimation for thousands of
    samples.Nat. Genet. 51 , 1321–1329 (2019). doi:10.1038/
    s41588-019-0484-x; pmid: 31477933
    35. D. Reichet al., Genetic history of an archaic hominin group
    from Denisova Cave in Siberia.Nature 468 , 1053– 1060
    (2010). doi:10.1038/nature09710; pmid: 21179161
    36. D. Reichet al., Denisova admixture and the first modern
    human dispersals into Southeast Asia and Oceania.Am. J.
    Hum. Genet. 89 , 516–528 (2011). doi:10.1016/
    j.ajhg.2011.09.005; pmid: 21944045
    37. G. S. Jacobset al., Multiple Deeply Divergent Denisovan
    Ancestries in Papuans.Cell 177 , 1010–1021.e32 (2019).
    doi:10.1016/j.cell.2019.02.035; pmid: 30981557
    38. V. M. Narasimhanet al., The formation of human populations
    in South and Central Asia.Science 365 , eaat7487 (2019).
    doi:10.1126/science.aat7487; pmid: 31488661
    39. L. Chen, A. B. Wolf, W. Fu, L. Li, J. M. Akey, Identifying and
    Interpreting Apparent Neanderthal Ancestry in African
    Individuals.Cell 180 , 677–687.e16 (2020). doi:10.1016/
    j.cell.2020.01.012; pmid: 32004458
    40. J. D. Wallet al., Higher levels of neanderthal ancestry in East
    Asians than in Europeans.Genetics 194 , 199–209 (2013).
    doi:10.1534/genetics.112.148213; pmid: 23410836
    41. I. McDougall, F. H. Brown, J. G. Fleagle, Stratigraphic
    placement and age of modern humans from Kibish, Ethiopia.
    Nature 433 , 733–736 (2005). doi:10.1038/nature03258;
    pmid: 15716951
    42. J.-J. Hublinet al., New fossils from Jebel Irhoud, Morocco
    and the pan-African origin ofHomo sapiens.Nature 546 ,
    289 – 292 (2017). doi:10.1038/nature22336;
    pmid: 28593953
    43. K. Wanget al., Ancient genomes reveal complex patterns of
    population movement, interaction, and replacement in
    sub-Saharan Africa.Sci. Adv. 6 , eaaz0183 (2020).
    doi:10.1126/sciadv.aaz0183; pmid: 32582847
    44. M. E. Prendergastet al., Ancient DNA reveals a multistep
    spread of the first herders into sub-Saharan Africa.Science
    365 , eaaw6275 (2019). doi:10.1126/science.aaw6275;
    pmid: 31147405
    45. A. Kalkauskaset al., Sampling bias and model choice in
    continuous phylogeography: Getting lost on a random walk.
    PLOS Comput. Biol. 17 , e1008561 (2021). doi:10.1371/
    journal.pcbi.1008561
    46. L. Vigilant, M. Stoneking, H. Harpending, K. Hawkes,
    A. C. Wilson, African populations and the evolution of human
    mitochondrial DNA.Science 253 , 1503–1507 (1991).
    doi:10.1126/science.1840702; pmid: 1840702
    47. P. A. Underhillet al., The phylogeography of Y chromosome
    binary haplotypes and the origins of modern human
    populations.Ann. Hum. Genet. 65 , 43–62 (2001).
    doi:10.1046/j.1469-1809.2001.6510043.x; pmid: 11415522
    48. J. F. O’Connell, J. Allen, The process, biotic impact, and
    global implications of the human colonization of Sahul about
    47,000 years ago.J. Archaeol. Sci. 56 , 73–84 (2015).
    doi:10.1016/j.jas.2015.02.020
    49. B. Llamaset al., Ancient mitochondrial DNA provides
    high-resolution time scale of the peopling of the Americas.
    Sci. Adv. 2 , e1501385 (2016). doi:10.1126/sciadv.1501385;
    pmid: 27051878
    50. J. V. Moreno-Mayaret al., Early human dispersals within the
    Americas.Science 362 , eaav2621 (2018). doi:10.1126/
    science.aav2621; pmid: 30409807
    51. R. A. Fisher,The Genetical Theory of Natural Selection
    (Clarendon, 1930).
    52. S. Wright, Evolution in Mendelian populations.Genetics 16 ,
    97 – 159 (1931). doi:10.1093/genetics/16.2.97;
    pmid: 17246615
    53. J. F. C. Kingman, The coalescent.Stochastic Process. Appl.
    13 , 235–248 (1982). doi:10.1016/0304-4149(82)90011-4
    54. G. A. T. McVean, N. J. Cardin, Approximating the coalescent
    with recombination.Phil. Trans. R. Soc. B 360 , 1387– 1393
    (2005). doi:10.1098/rstb.2005.1673; pmid: 16048782
    55. M. D. Rasmussen, M. J. Hubisz, I. Gronau, A. Siepel,
    Genome-wide inference of ancestral recombination graphs.
    PLOS Genet. 10 , e1004342 (2014). doi:10.1371/
    journal.pgen.1004342; pmid: 24831947
    56. K. Harris, From a database of genomes to a forest of
    evolutionary trees.Nat. Genet. 51 , 1306–1307 (2019).
    doi:10.1038/s41588-019-0492-x; pmid: 31477932
    57. C. L. Scheibet al., East Anglian early Neolithic monument
    burial linked to contemporary Megaliths.Ann. Hum. Biol. 46 ,
    145 – 149 (2019). doi:10.1080/03014460.2019.1623912;
    pmid: 31184205
    58. A. J. Stern, L. Speidel, N. A. Zaitlen, R. Nielsen, Disentangling
    selection on genetically correlated polygenic traits via whole-
    genome genealogies.Am. J. Hum. Genet. 108 , 219– 239
    (2021). doi:10.1016/j.ajhg.2020.12.005; pmid: 33440170
    59. L. Speidelet al., Inferring population histories for ancient
    genomes using genome-wide genealogies.Mol. Biol. Evol. 38 ,
    3497 – 3511 (2021). doi:10.1093/molbev/msab174
    60. N. K. Schaefer, B. Shapiro, R. E. Green, An ancestral
    recombination graph of human, Neanderthal, and Denisovan
    genomes.Sci. Adv. 7 , eabc0776 (2021). doi:10.1126/
    sciadv.abc0776; pmid: 34272242
    61. R. Nielsenet al., Tracing the peopling of the world through
    genomics.Nature 541 , 302–310 (2017). doi:10.1038/
    nature21347; pmid: 28102248
    62. J. J. Michaelsonet al., Whole-genome sequencing in autism
    identifies hot spots for de novo germline mutation.Cell 151 ,
    1431 – 1442 (2012). doi:10.1016/j.cell.2012.11.019;
    pmid: 23260136
    63. A. V. Nesta, D. Tafur, C. R. Beck, Hotspots of Human
    Mutation.Trends Genet. 37 , 717–729 (2021). doi:10.1016/
    j.tig.2020.10.003; pmid: 33199048
    64. R. Hui, E. D’Atanasio, L. M. Cassidy, C. L. Scheib, T. Kivisild,
    Evaluating genotype imputation pipeline for ultra-low
    coverage ancient genomes.Sci. Rep. 10 , 18542 (2020).
    doi:10.1038/s41598-020-75387-w; pmid: 33122697
    65. K. P. Murphy, Y. Weiss, M. I. Jordan, inProceedings of
    the Fifteenth Conference on Uncertainty in Artificial Intelligence,
    K. B. Laskey, H. Prade, Eds. (Morgan Kaufmann Publishers Inc.,
    1999), pp. 467–475.
    66. M. E. Allentoftet al., Population genomics of Bronze Age
    Eurasia.Nature 522 , 167–172 (2015). doi:10.1038/
    nature14507; pmid: 26062507
    67. C. E. G. Amorimet al., Understanding 6th-century barbarian
    social organization and migration through paleogenomics.
    Nat. Commun. 9 , 3547 (2018). doi:10.1038/s41467-018-
    06024-4; pmid: 30206220
    68. M. L. Antonioet al., Ancient Rome: A genetic crossroads of
    Europe and the Mediterranean.Science 366 , 708–714 (2019).
    doi:10.1126/science.aay6826; pmid: 31699931
    69. S. Braceet al., Ancient genomes indicate population
    replacement in Early Neolithic Britain.Nat. Ecol. Evol. 3 ,
    765 – 771 (2019). doi:10.1038/s41559-019-0871-9;
    pmid: 30988490
    70. F. Broushakiet al., Early Neolithic genomes from the eastern
    Fertile Crescent.Science 353 , 499–503 (2016). doi:10.1126/
    science.aaf7943; pmid: 27417496
    71. L. M. Cassidyet al., Neolithic and Bronze Age migration to
    Ireland and establishment of the insular Atlantic genome.
    Proc. Natl. Acad. Sci. U.S.A. 113 , 368–373 (2016).
    doi:10.1073/pnas.1518445113; pmid: 26712024
    72. P. B. Damgaardet al., 137 ancient human genomes from
    across the Eurasian steppes.Nature 557 , 369–374 (2018).
    doi:10.1038/s41586-018-0094-2; pmid: 29743675
    73. P. de Barros Damgaardet al., The first horse herders and the
    impact of early Bronze Age steppe expansions into Asia.
    Science 360 , eaar7711 (2018). doi:10.1126/science.aar7711;
    pmid: 29743352
    74. S. S. Ebenesersdóttiret al., Ancient genomes from Iceland reveal
    the making of a human population.Science 360 , 1028– 1032
    (2018). doi:10.1126/science.aar2625; pmid: 29853688
    75. M. Feldmanet al., Late Pleistocene human genome suggests
    a local origin for the first farmers of central Anatolia.Nat.
    Commun. 10 , 1218 (2019). doi:10.1038/s41467-019-09209-7;
    pmid: 30890703
    76. M. Feldmanet al., Ancient DNA sheds light on the genetic
    origins of early Iron Age Philistines.Sci. Adv. 5 , eaax0061
    (2019). doi:10.1126/sciadv.aax0061; pmid: 31281897


Wohnset al.,Science 375 , eabi8264 (2022) 25 February 2022 7of9


RESEARCH | RESEARCH ARTICLE

Free download pdf