The Economist - USA (2022-02-26)

(Maropa) #1

76 Science & technology The Economist February 26th 2022


ment,intheformofitsNationalAcade­
miesofSciences,EngineeringandMedi­
cine,setupa committee,co­chairedbyDr
LoandDrSanes,toinvestigatebothmat­
ters,inordertoheadofffuturetrouble.
This committee published its report
lastyear,andDrLodiscusseditwitha fel­
lowcommitteemember,AltaCharo,ofthe
University of Wisconsin­Madison. The
generaltenorwaskeepcalmandcarryon.
Butcautiously. Thepotential benefitsof
both typesof research are huge. As Dr
Saneshadearlierpointedout,ailmentsof
thebrainare,collectively,thebiggestcause
ofmorbidityaroundtheworld,aswellasa
hugecauseofmortality.Butexperiments
mustbeethical.Anysignofheightened
sufferinginanimalscausedbytheirhav­
inghumanneuronsintheirbrainsneeds
tobescrutinisedcarefully.
As to brain­organoid consciousness,
thoughorganoids’simplicityandlackof
connectiontotheworldmakesthisunlike­
ly,assembloidsmightchangethat.AsDrLo
observed,thissortofworktapsintofears
raisedovermanyyearsbysciencefiction.
Butsciencefictiondoessometimesgoon
tobecomescientificfact.n

Intergenerationalmemory

The worm’s turn


C


harlesdarwindidnotinventtheidea
of  evolution.  But  he  did  come  up  with
the  currently  accepted  explanation,  natu­
ral selection, in which heritable character­
istics  arise  by  chance  and  are  retained  if
competition shows them to be useful. Nat­
ural selection’s success overthrew an earli­
er idea proposed by Jean­Baptiste Lamarck,
a  French  natural  historian.  Lamarck  had
suggested that characteristics acquired by
experience  during  an  organism’s  lifetime
might somehow become heritable. 
Modern  genetics  has  no  place  for  La­
marckism  as  a  long­term  mechanism,  be­
cause  it  would  involve  writing  the  recipe
for such environmentally induced changes
accurately into an organism’s dna. But oc­
casional  examples  of  short­term  effects
that  resemble  it  do  turn  up  from  time  to
time.  They  usually  involve  minor  and  re­
versible  chemical  tweaks  to  the  dna in
sperm and eggs, or to the proteins in which
that  dnais  packaged  into  chromosomes.
These tweaks, known as epigenetic effects,
tend to cause general, and not always help­
ful,  responses  to  events  like  famine,  and
persist  for  only  a  generation  or  two.  The
aaasmeeting heard, however, of an exam­

ple that has a much more intriguing mech­
anism. It encodes a specific, life­saving be­
haviour  in  a  relative  of  dnacalled  rna.
And it is passed down even unto the third
and fourth generations. 
Coleen Murphy of Princeton University
studies  C. elegans,  a  nematode  worm  be­
loved  of  geneticists  that  is,  as  a  conse­
quence,  one  of  the  planet’s  best  under­
stood  animals.  C. eleganslives  in  rotting
fruit, and eats bacteria. Among its favour­
ite prey are bugs of the genus Pseudomonas.
But  munching  these  does  not  always  go
well.  One  species,  P. aeruginosa,  is  a  dan­
gerous  pathogen,  at  least  when  the  tem­
perature  is  above  25°C.  Not  surprisingly,
worms which survive their first encounter
with  P. aeruginosain  such  circumstances
are put off by the experience. Thenceforth
they  are  repelled  by,  rather  than  attracted
to, its chemical traces.
That  makes  perfect  sense.  But  Dr  Mur­
phy, who is interested in the phenomenon
of  epigenetic  transmission,  wondered  if
this  aversive  behaviour  might  also  be  dis­
played by the offspring of those worms.
It was. And by the offspring of those off­
spring.  And  by  the  offspring  of  the  off­
spring of those offspring. In fact, it did not
disappear  until  the  fifth  generation  of
worms  descended  from  the  one  that  had
had  the  bad  experience.  By  this  time  the
ambient temperature might have fallen be­
low 25°C, making P. aeruginosaonce again
an attractive food source.
A lot of molecular­biological manipula­
tion  by  members  of  Dr  Murphy’s  team
showed that the switch from attraction to
repulsion  is  caused  by  an  increase  in  the
amount of a protein called daf­7 in a pair of
nerve  cells  called  asineurons  found  near
the worm’s mouth. Not only were elevated
levels  of  this  protein  confined  to  those
worms which were repelled by P. aerugino-
sa, but they also remained elevated for four
further  generations,  returning  to  normal,
along with the behaviour, in the fifth.
The biochemical underpinning of this,
it turned out after further rounds of experi­
ments,  is  an  rnamolecule,  p11,  which  is
produced by P. aeruginosaand taken up by
the worms. Experiments showed that after
exposure to p11, daf­7 levels in worms’ asi
neurons  went  up,  and  the  worms  then
avoided  P. aeruginosa.  Because  rnaand
dnaare chemically similar, strands of rna
can bind to strands of dnaif the composi­
tions  of  the  two  are  complementary.  And
that  is  what  is  happening  here.  Part  of  p 11
matches part of a gene called maco-1, that is
active  in  asi neurons.  Binding  between
them  turns  down  the  volume  on  maco-1,
which has the effect of turning up the vol­
ume on the gene which encodes daf­7 and
switching on the evasive response.
Somehow, therefore, p11 is being passed
from one worm generation to another. And
this seems to involve an object called a re­

trotransposon. Retrotransposons  are  vi­
rus­like structures that can copy rnainto
dna. Dr Murphy’s latest experiments show
that  worms  have  one  called  Cer 1which
does this with p11.
Cer 1thus acts as a sort of vehicle, out­
side the cell nucleus, which carries p11. It is
able, in experiments, to pass the rnaon to
other  worms,  which  then  also  become  P.
aeruginosa­averse  for  four  generations.
And it does something similar to the germ
cells inside its original host. Why the effect
persists for four generations and no longer
remains  unknown.  But  what  this  elegant
piece  of  scienceshows  is  that  a  specific,
useful acquiredcharacteristic can, indeed,
Nematode progeny “remember” hostile be inherited.n
bacteria encountered by a parent

The kids are alright

Lithiumproduction

Filter feeders


A


round 60%of  the  world’s  lithium,  a
metal in high demand for making bat­
teries, comes from evaporation ponds, like
that pictured overleaf, located in deserts in
Argentina, Bolivia and Chile. These ponds,
which can have individual areas of 60km^2
or more, are filled with lithium­rich brine
pumped from underground. That brine, as
the ponds’ name suggests, is then concen­
trated in them by evaporation, after which
it is treated to purge it of other metals, such
as  sodium  and  magnesium,  and  the  lithi­
um is precipitated as lithium carbonate. 
This  all  takes  time—often  as  much  as
two years. And the process of purification
is  complex  and  inefficient.  As  a  conse­
quence,  only  about  30%  of  the  lithium  in
the original brine reaches the marketplace. 

Two new ways of extracting lithium
from brine
Free download pdf