SPLINES 141Fork= 2, y[xj, xj+ 1 , xj+ 2 ]=
()
- ()
()
+1
+1+2
+2y
wxy
wxy
wxj
jj
jj
′′ ′jHere,w(x) = (x–xj)(x–xj+ 1 )(x–xj+ 2 ) so that
w′(x) = (x–xj+ 1 )(x–xj+ 2 ) + (x–xj)(x–xj+ 2 ) + (x–xj)(x–xj+ 1 )Thus,
w′(xj) = (xj–xj+ 1 )(xj–xj+ 2 ),w′(xj+ 1 ) = (xj+ 1 – xj)(xj+ 1 – xj+ 2 ) and w′(xj+ 2 ) = (xj+ 2 – xj)(xj+2–xj+ 1 )This gives
y[xj, xj+ 1 , xj+ 2 ]=
(– )( – )
+
(– )( – )
+
+1 + 2 (– )( – )+1
+1 +1 + 2+2
+2 +2 +1y
xx xxy
xxxxy
xxxxj
j j j jj
j j jjj
j j jj=( – ) – ( – ) + ( – )
( – )( – )( – )+2 +1 +1 +2 +2 +1
+2 +1 +2 +1yx x y x x y x x
xxxxxxj jj jjj jjj
j j j j jj=( – ) – ( – + – ) + ( – )
( – )( – )( – )+ 2 +1 +1 + 2 +1 +1 + 2 +1
+2 +1 +2 +1yx x y x x x x y x x
xxxxxxj jj jjjjj jj j
j j j j jj=( – )( – ) + ( – )( – )
( – )( – )( – )+ 2 +1 +1 +1 + 2 +1
+2 +1 +2 +1xxyy xxyy
xxxxxxjjj jjj jj
j j j j jj=^1
(– )(– )
(– )(– )
(– )
=[ , ] – [ , ]
+2 (– )+2 +1
+2 +1+1
+1+1 + 2 +1
xx +2yy
xxyy
xxyx x yx x
j j xxjj
jjj j
j jjj j j
j j⎡
⎣⎢⎤
⎦⎥5.5.1 Divided Difference Method to Compute B-Spline Basis Functions
To compute a B-spline basis function of order musing divided differences, consider a truncated
power function (Figure 5.8(a))
ft tt t
tmm
( ) = =
0, 0
, < 0
+
–1
⎧ –1 ≥
⎨⎪
⎩⎪(5.18)t
(a)t
(b)tjt+m–1(– )ttj +m–1Figure 5.8 Plots of truncated power functions