SPLINES 149=–3
–1 –3–3
–2 –3 –2–1
–1 – 2 –1 –2–2
–1 – 2tt
tttt
tttt
tttt
tttt
tti
iii
iiii
iiii
i ii
ii⎡ δδ
⎣⎢⎤
⎦⎥δδδi i
i i itt
–1 tt–1
+⎡
⎣⎢⎤
⎦⎥or
Nt
tt
tttttt t t
tttttttt
ii
iiii
iii
iiiii i
3,–3^2
–1 –3 – 2 –3
–2–3 –1
–1 –3 –1 – 2() = (– ) –2
(– )(– )
+
( – )( – )
(– )(– )
+
(– )( – )
(
δ
ttt t ti– )(iii–2 –1– )–2 i–1⎡
⎣⎢⎤
⎦⎥δ+
(– )
(– )( – )2
–1 – 2tt
tt tti
i i i iδi (5.33)Thus
Nt
tt
tt t ttt t t
tt tttttt
i t
i
i ii i
i
i i
i i i iii
3, +1
–2
2
–2 –1 –2
–1
–2
–2 –1() = (– ) +1 –1
(– )( – )
+
( – )( – )
(– )( – )
+
(– )( – )
(
δ
iiii i
ttt i
+1– )( – )–1 –1⎡
⎣⎢⎤
⎦⎥δ+
(– )
( – )( – )+1
2
+1 +1 –1
+1tt
tttti
i i iiδiNt
tt
tttttt t t
tttttttt
i
i
iii i
i
ii
iiiii i
3, +2
–1
2
+1 –1 –1–1 +1
+1 –1 +1() = (– ) +2
( – )( – )
+
(– )( – )
(– )( – )
+
(– )( – )
(
δ
ttttti+2– )(i i+1 – )i i+1⎡
⎣⎢⎤
⎦⎥δ+
(– )
(– )( – )+2
2
+2 +1 +2
+2tt
tttti
iiiiδiand
Nttt
ttttttt t
tttttttt
i ti
i i i i ii i
i i iiii
3, +3 i2
+2 +1 +1+2
+2 +2 +1+3 +1
+3() =(– )
(– )( – ) +- )( – )
(– )( – ) +
–– )
δ (–(()(
tt tii i+1)(+ 2 – +1) i+2⎡
⎣⎢⎤
⎦⎥δ+(– )
(– )( – )+3^2
+3 +2 +3 +1
+3tt
tttti
iiiiδiSince for t∈ [ti,ti+1),δi+1 = 1 and δi–1 = δi = δi+2 = δi+3 = 0, we have
N3,i+1(t) + N3,i+2(t) + N3,i+3(t) =
(– )
(– )( – )+1^2
+1 +1 –1tt
tttti
i i ii+
(– )( – )
( – )( – )–1 +1
+1 –1 +1tt t t
ttttii
iiii+
(– )( – )
(– )( – )
+
(– )
( – )( – )+2
+2 +12
+2 +1tttt
tttttt
ttttii
iiiii
iiii=( – )( – )
(– )( – )
+(– )( – )
( – )( – )+1 +1 –1
+1 +1 –1+2
+2 +1tttt
ttttttt t
ttttiii
i i iii i i
i i i i=(– )
(– ) +(– )
(– ) =(– )
(– ) = 1+1
+1 +1+1
+1tt
tttt
tttt
tti
i ii
i ii i
i i(F) For m + 1 number of knots, degree p–1 basis functions and n + 1 number of control
points, m = n + p
Forn+1 control points and hence basis functions of order p, this property puts a limit on the number