Computer Aided Engineering Design

(backadmin) #1
DIFFERENTIAL GEOMETRY OF SURFACES 179

Therefore, κn


d
ds

d
ds

dd
dd
= – = – with ds^2 d d

rn rn
rr
⋅ rr



≈⋅ (6.28)

We can simplify Eq. (6.28) by decomposing dr and dn along parametric lengths du and dv, that is


dr =rudu + rvdv, dn = nudu + nvdv

⇒ dr·dn =ru·nu(du)^2 + (ru·nv + rv·nu)dudv + rv·nv(dv)^2


dr·dr =ru·ru(du)^2 + (ru·rv + rv·ru)dudv + rv·rv(dv)^2
=G 11 du^2 + 2G 12 dudv + G 22 dv^2 (6.29)

Sinceru and rv are both perpendicular to n, using Eq. (6.18), we get


ru·n= 0 ⇒ ruu·n + ru·nu = 0 ⇒ru·nu = –ruu·n = –L (6.30a)
rv·n= 0 ⇒rvv·n + rv·nv = 0 ⇒rv·nv = –rvv·n = –N
ru·n= 0 ⇒ruv·n + ru·nv = 0 ⇒ru·nv = –ruv·n = –M (6.30b)
rv·n= 0 ⇒rvu·n + rv·nu = 0 ⇒rv·nu = –rvu·n = –M

Using Eqs. (6.28), (6.29) with (6.30), the expression for the normal curvature


κ
μμ
μμ
n

Ldu Mdud N d
Gdu G dud G d

LMN
GGG

=
+ 2 +
+ 2 +

=
+ 2 +
+ 2 +

22

11
2
12 22
2

2

11 12 22
2

vv
vv

(6.31)

whereμ =.
d
du


v

Equation (6.31) can be rewritten as
(G 11 + 2G 12 μ + G 22 μ^2 )κn = L + 2Mμ + Nμ^2 (6.32)

For an optimum value of the normal curvature
d
d


κn
μ
= 0. Differentiating Eq. (6.32) yields

(GGG 11 + 2 12 + 22 2 ) + 2( 12 + 22 ) = 2( + )
d
d
μμn GG n MN
κ
μ
μκ μ (6.33a)

⇒ (G 12 + G 22 μ)κn = (M + Nμ) (6.33b)


Equating Eqs. (6.31) and (6.33(b)), we get

κ

μ
μ

μμ
μμ

μμ μ
n μμ μ

MN
GG

LMN
GG G

LM MN
GG GG
=

+
+
=

+ 2 +
+ 2 +

=

( + ) + ( + )
12 22 ( + ) + ( + )

2

11 12 22

(^211121222)
which can be simplified as
κ
μ
μ
μ
n μ
MN
GG
LM
GG






  • =




  • 12 22 11 + 12
    ⇒ (M–G 12 κn) + (N–G 22 κn)μ = 0



Free download pdf