DESIGN OF SURFACES 211rrrr
rrrr
rrrr
rrrrrr r rrr r rrr r r33 32 31 30
23 22 21 20
13 12 11 10
03 02 01 00=(1, 1) 1,^2
3
1,^1
3
(1, 0)
2
3
, 1^2
3
,^2
32
3
,^1
32
3
, 0
1
3
, 1^1
3
,^2
31
3
,^1
31
3
, 0⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥()()()( )( )( )()( )( )(()()()⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥rr r r(0, 1) 0, ⎥
2
3
0,^1
3
(0, 0)(7.23)From Eqs. (7.22) and (7.23)
rrrr
rrrr
rrrr
rrrrDDDD
DDDD
DDDD
DDD33 32 31 30
23 22 21 20
13 12 11 10
03 02 01 0033 32 31 30
23 22 21 20
13 12 11 10
03 02 01=1111
8
274
92
3 1
1
271
91
3
1
0001⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥ DD 001 8
271
27
01 4
91
9
01 23 13 0
11 1 1⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥(7.24)using which
DDDD
DDDD
DDDD
DDDDMrrrr
rrrr
rrrr
rrrrMM33 32 31 30
23 22 21 20
13 12 11 10
03 02 01 001633 32 31 30
23 22 21 20
13 12 11 10
03 02 01 00= 16 , where 16 =1111
8
274
9⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥T22
3
1
1
271
91
3
1
0001–1
⎡⎣⎢
⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥
⎥The expression for a surface patch interpolating 16 uniformly spaced points is then
rMrrrr
rrrr
rrrr
rrrr( , ) = [ 1] M132
1633 32 31 30
23 22 21 20
13 12 11 10
03 02 01 00163
2
uuuuv Tv
v
v⎡⎣⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥⎡⎣⎢
⎢
⎢
⎢⎤⎦⎥
⎥
⎥
⎥(7.25)7.1.4 Bézier Surface Patches
Similar to Bézier curves employing Bernstein polynomials as weight functions with control points
(Chapter 4), a tensor product Bézier surface patch is given by
rr(, ) = () ()
=0 =0
uBuB
im
jn
ij i
m
jvvΣΣ n (7.26)
whererij,i = 0,... , m,j = 0,... , n are the control points and Buim() and Bjn()v are Bernstein
polynomials in parameters u and v. The control points form the control polyhedron orcontrol polynet
of the surface (Figure 7.6). For any u = u 0 ,r(u 0 ,v) is a Bézier curve of degree n. Likewise, for any
v = v 0 ,r(u,v 0 ) is a Bézicr curve of degree m. Eq. (7.26) may be written in the form