Computer Aided Engineering Design

(backadmin) #1

316 COMPUTER AIDED ENGINEERING DESIGN


whereλλλλλT =


cos 0
sin 0
0 cos
0 sin

θ
θ
θ
θ













. We can realize that λλλλλue = λλλλλλλλλλTu = I 2 × 2 u = u. Substituting u = λλλλλue in


Eq. (11.7l) gives


SE =^1
2
() =^1
2
=^1
2
uBBuue T BBuuku
V

T
ee
TT
V

T
ee
T
∫∫EdV EdV ee


















⎟ (11.7n)

whereke = λλλλλT
V


TEdV







BB  = λλλλλTkλλλλλ is the transformed stiffness matrix of the truss element.

Using Eqs. (11.7l) and (11.7m), we have


ke AE
l
=

cos 0
sin 0
0 cos
0 sin

1–1
–1 1

cos sin 0 0
0 0 cos sin

θ
θ
θ
θ

θθ
θθ














⎝⎜


⎠⎟







=

cos cos sin – cos – cos sin
cos sin sin – cos sin –sin


  • cos – cos sin cos cos sin

  • cos sin – sin cos sin sin


22
22
22
22

AE
l

θθθ θθθ
θθ θ θθ θ
θθθθθθ
θθ θ θθ θ

⋅⋅
⋅⋅
⋅⋅
⋅⋅













(11.7o)

which satisfies the equilibrium condition keue = fe, where fe = λλλλλTf analogous to the transformation for
displacements. The reader may verify that the rank of ke as given in Eq. (11.7o) is one even though
it is of 4 × 4 size. This is because a truss element in two dimensions has three degrees of rigid-body
motion, i.e., translation along x and y axes, and rotation in the xy plane.


ξ

ujy,fjy

ujx,fjx

uj

θ

y

x

ui

uiy,fiy

uix,fix

Figure 11.4 A truss element oriented at an angle θθθθθ
Free download pdf