FINITE ELEMENT METHOD 323ui vi θi uj vj θjktruss =00– 00
000000
000000
–00 00
000000
000000AE
lAE
lAE
lAE
luui i i j j j
⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
vvθθand for beam element
ui vi θi uj vj θj
kbeam32 322232 3 222=00 000 00 12 6 0 – 12 606 4 0–6 200 000 00 – 12 – 6 0 12 – 606 2 0–6 4EI
lEI
lEI
lEI
l
EI
lEI
lEI
lEI
lEI
lEI
lEI
lEI
l
EI
lEI
lEI
lEI
l⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎥⎥
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥uui i i j j jvvθθAdding the two matrices, we get the frame element stiffness matrix asFigure 11.9 A frame elementylνi, Fvi
θi, Mi θj, Mjvj, Fviui, Fui uj, Fujand rotation perpendicular to the plane of the element (Figure 11.9). For u = [ui,vi,θi, uj,vj,θj]T
chosen as the displacement vector for the element, the stiffness matrices of the truss and beam
elements in Eqs. (11.7l) and (11.9g) can be combined. Expressing the stiffness in all six degrees of
freedom, for the truss element, we have
x