324 COMPUTER AIDED ENGINEERING DESIGN
ui vi θi uj vj θjk =00– 000 12 6 0 – 12 606 4 0–6 2–00 000 – 12 – 6 0 12 – 606 2 0–6 432 322232 3 222AE
lAE
l
EI
lEI
lEI
lEI
l
EI
lEI
lEI
lEI
l
AE
lAE
l
EI
lEI
lEI
lEI
l
EI
lEI
lEI
lEI
l⎡⎣⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎤⎦⎥
⎥
⎥
⎥
⎥⎥
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥uui i i j j j
vvθθ(11.9h)11.5.1 Frame Elements and Transformations
For a frame element to be oriented at an angle θ in the x-y plane (Figure 11.10), the displacements
along the x and y global coordinate axes, namely, uix,uiy for node i and ujx,ujy for node j can be
extracted using the following transformation. Note that the rotations θi and θj remain invariant.
ueix
iy
i
jx
jy
ji
i
i
j
ju
uu
uuu= =cos – sin 0 0 0 0
sin cos 0 0 0 0
001000
0 0 0 cos – sin 0
0 0 0 sin cos 0
000001θθθθ
θθθθ
θθθ⎛⎝⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎞⎠⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎛⎝⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎞⎠⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
vv
θθjT⎛⎝⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎞⎠⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟= u (11.9i)The stiffness of the frame element for the displacements (and forces) along the x and y directions,
and rotations (moments) perpendicular to the plane containing the frame element is given similar to
the truss element as
ujy
ujujxvjθj
ξθ
uiy
uiuixviθiyxFigure 11.10 A frame element oriented at an angle θθθθθ