DIFFERENTIAL GEOMETRY OF CURVES 81The unit bi-normal vector Bmay be obtained from Eq. (3.30b) as
B ̇r ̇ ̇r
̇r ̇ ̇r
=
| |×
×
̇ ̇rijk = – cos – sin + 0atatr ̇ ̇ ̇rijk
= – sin cos ijk- cos – sin 0
× = sin – cos +^2⎡⎣⎢
⎢
⎢⎤⎦⎥
⎥
⎥at a t b
at atab t ab t a| | = ( ̇r× ̇ ̇r ab sin ) + (–t^222222 ab cos ) + (t a ) = a a + bTherefore, B
ijk
sin – cos +
(^22) +
btbta
ab
The normal vector N is given by
N = B×T
Therefore
N
ijk
=^1 ijk
- sin – cos
- sin cos
22 = – (cos + sin + 0 )
abbt b ta
at a t bttThe curvature is given by Eq. 3.30(c).
κ = | |
| |=+
( + )=
( + )
3.22
223/2 22r ̇ ̇ ̇r
̇r× aa b
aba
abTherefore, the radius of curvature ρ =
( + ab^22 )
a
.
From Eq. (3.33), the torsion τ is given as
τ =
d
dsBd
dsd
dtds
dtd
dtd
dtBB B r
= ⎛ =
⎝⎞
⎠d
dtbtbt
abBij
=
cos + sin(^22) +
d
dt
ab
r
=^22 +
⇒ τ =
cos + sin
(+ )
(^22) (+ ) 22
btbt
ab
b
ab
ij