Computational Physics

(Rick Simeone) #1

120 Density functional theory


[6] P. Phariseau and W. M. Temmerman,The Electronic Structure of Complex Systems, NATO ASI
series B. New York, Plenum, 1984.
[7] R. M. Martin,Electronic Structure. Cambridge, Cambridge University Press, 2004.
[8] D. C. Langreth and M. J. Mehl, ‘Easily implementable nonlocal exchange-correlation energy-
functional,’Phys. Rev. Lett. 47 (1981), 446–50.
[9] J. P. Perdew and A. Zunger, ‘Self-interaction correction to density-functional approximations
for many-electron systems,’Phys. Rev. B, 23 (1981), 5048–79.
[10] J. C. Slater,Quantum Theory of Molecules and Solids, vol. IV. New York, McGraw-Hill, 1982.
[11] D. M. Ceperley, ‘Ground state of the fermion one-component plasma – a Monte Carlo study in
two and three dimensions,’Phys. Rev. B, 18 (1978), 3126–38.
[12] U. von Barth and L. Hedin, ‘A local exchange-correlation potential for the spin-polarized case:
I,’J. Phys. C, 5 (1972), 1629–42.
[13] O. Gunnarson and B. I. Lundqvist, ‘Exchange and correlation in atoms, molecules and solids
by the spin-density-functional formalism,’Phys. Rev. B, 13 (1976), 4274–98.
[14] J. P. Perdew and Y. Wang, ‘Accurate and simple density functional for the electronic exchange
energy: Generalized gradient approximation,’Phys. Rev. B, 33 (1986), 8800–2.
[15] J. P. Perdew, ‘Density-functional approximation for the correlation energy of the inhomogeneous
electron gas,’Phys. Rev. B, 33 (1986), 8822–4.
[16] Y. Wang and J. P. Perdew, ‘Correlation hole of the spin-polarized electron gas, with exact
small-wave-vector and high-density scaling,’Phys. Rev. B, 44 (1991), 13298–307.
[17] A. D. Becke, ‘Density functional exchange energy approximation with correct asymptotic
behaviour,’Phys. Rev. A, 38 (1988), 3098–100.
[18] C. Lee, W. Yang, and R. G. Parr, ‘Development of the Colle–Salvetti correlation-energy formula
into a functional of the electron density,’Phys. Rev. B, 37 (1988), 785–9.
[19] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple,’
Phys. Rev. Lett., 77 (1996), 3865–86.
[20] J. P. Perdew, K. Burke, and M. Enzerhof, ‘Generalized gradient approximation made simple
(Erratum),’Phys. Rev. Lett., 78 (1997), 1396.
[21] R. T. Sharp and G. K. Horton, ‘A variational approach to the unipotential many-electron problem,’
Phys. Rev., 90 (1953), 317.
[22] J. D. Talman and W. F. Shadwick, ‘Optimized effective atomic central potential,’Phys. Rev. A,
14 (1976), 36–40.
[23] J. D. Talman and W. F. Shadwick, ‘Asymptotic behavior of atomic and molecular wave functions,’
Proc. Natl. Acad. Sci, 77 (1980), 4403–6.
[24] M. Levy, J. P. Perdew, and V. Shani, ‘Exact differential equation for the density and ionization
energy of a many-particle system,’Phys. Rev. A, 30 (1984), 2745–8.
[25] J. F. Janak, ‘Proof that∂E/∂ni=εin density-functional theory,’Phys. Rev. B, 18 (1978),
7165–8.
[26] J. P. Perdew, R. G. Par, M. Levy, and J. L. Balduz, ‘Density-functional theory for frac-
tional particle number: derivative discontinuities of the energy,’Phys. Rev. Lett., 49 (1982),
1691–4.
[27] J. F. Janak, ‘Significance of the highest occupied Kohn–Sham eigenvalue,’Phys. Rev. B, 56
(1997), 12042–5.
[28] L. Hedin, ‘New method for calculating the one-particle Green’s function with application to the
electron-gas problem,’Phys. Rev., 139 (1965), A796–A823.
[29] F. Aryasetiawan and O. Gunnarsson, ‘The GW method,’Rep. Prog. Phys., 61 (1998),
237–312.
[30] W. G. Aulbur, L. Jönsson, and J. W. Wilkins, ‘Quasiparticle calculations in solids,’ inSolid
State Physics, vol. 54 (H. Ehrenreich and F. Spaepen, eds.). San Diego, Academic Press, 2000,
pp. 1–218.

Free download pdf