228 Molecular dynamics simulations
First we derive the equations of motion in the usual way:dri
dt=
∂H
∂pi=
pi
ms^2(8.83a)ds
dt=
∂H
∂ps=
ps
Q(8.83b)dpi
dt=−
∂H
∂ri=−∇iU(R)=−∑
i<j∇iU(ri−rj) (8.83c)dps
dt=−
∂H
∂s=
(∑
ip
2
i
ms^2−gkBT)/
s. (8.83d)We have used the notation∂H/∂pi=∇piH, etc. The partition function of the total
system (i.e. including heat bath degree of freedoms) is given by the expression:
Z=
1
N!
∫
dps∫
ds∫
dP∫
dR×δ
∑
ip^2 i
2 ms^2+
1
2
∑
ij,i=jU(rij)+p^2 s
2 Q
+gkBTln(s)−E
. (8.84)
Integrations
∫
dRand∫
dPare over all position and momentum degrees of freedom.
We now rescale the momentapi:
pi
s=p′i, (8.85)so that we can rewrite the partition function as
Z=
1
N!
∫
dps∫
ds∫
dP′∫
dR×s^3 Nδ
∑
ip′^2 i
2 m+
1
2
∑
ij,i=jU(rij)+p^2 s
2 Q+gkBTln(s)−E
. (8.86)
We define the HamiltonianH 0 in terms ofRandP′as
H 0 =
∑
ip′^2 i
2 m+
1
2
∑
ij,i=jU(rij). (8.87)