9.2 The molecular dynamics method 267method by recalling the energy functionals of the Hartree–Fock and the density
functional theory (see Chapters 4 and 5 ).
The ground state Hartree–Fock wave function forNelectrons can be written as
the Slater determinant
G(R)=det[ψk(xi)]=1
√
N!
∣
∣
∣∣
∣∣
∣∣
∣
ψ 1 (x 1 )ψ 2 (x 1 ) ··· ψN(x 1 )
ψ 1 (x 2 )ψ 2 (x 2 ) ··· ψN(x 2 )
..
...
.
..
.
ψ 1 (xN)ψ 2 (xN) ··· ψN(xN)∣
∣
∣∣
∣∣
∣∣
∣
, (9.5)
where theψkare one-electron spin-orbitals;xiis the combined spin and orbital
coordinate of particle i. The spin-orbitals should satisfy the orthonormality
requirements
〈ψk|ψl〉=δkl. (9.6)The energy is given in terms of theψkas
EHF=∑
k〈ψk|h|ψk〉+1
2
∑
kl[〈ψkψl|g|ψkψl〉−〈ψkψl|g|ψlψk〉]. (9.7)his the one-electron Hamiltonian andgis the electron–electron Coulomb repulsion
(seeChapter 4). Minimisation of this expression with respect to theψksubject to
the constraint (9.6) requires the Fock equation to be satisfied:
Fψk=∑
l(^) klψl (9.8)
with
Fψk=
[
−
1
2
∇^2 −
∑
nZn
|r−Rn|]
ψk(x)+∑N
l= 1∫
dx′|ψl(x′)|^21
|r−r′|ψk(x)−
∑N
l= 1∫
dx′ψl∗(x′)1
|r−r′|
ψk(x′)ψl(x). (9.9)After a unitary transformation of the set{ψk}(seeSection 4.5.2and Problem 4.7),
Eq. (9.8)transforms into
Fψk=εkψk. (9.10)UsingFψk=δEHF/δψk, we can rewrite this as
δEHF
δψk(x)
=εkψk(x). (9.11)The eigenvaluesεkare the Fock levels; the energy can be calculated from these.